Universität Wien FIND

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Vor-Ort-Lehre und Umstellung auf Online-Prüfungen) erforderlich sein. Melden Sie sich für Lehrveranstaltungen/Prüfungen über u:space an, informieren Sie sich über den aktuellen Stand auf u:find und auf der Lernplattform moodle. ACHTUNG: Lehrveranstaltungen, bei denen zumindest eine Einheit vor Ort stattfindet, werden in u:find momentan mit "vor Ort" gekennzeichnet.

Regelungen zum Lehrbetrieb vor Ort inkl. Eintrittstests finden Sie unter https://studieren.univie.ac.at/info.

040031 KU Python for Finance I (MA) (2021S)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Prüfungsimmanente Lehrveranstaltung
DIGITAL

An/Abmeldung

Details

max. 50 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Dienstag 02.03. 13:15 - 16:30 Digital
Dienstag 09.03. 13:15 - 16:30 Digital
Dienstag 16.03. 13:15 - 16:30 Digital
Dienstag 23.03. 13:15 - 16:30 Digital
Dienstag 13.04. 13:15 - 16:30 Digital
Dienstag 20.04. 13:15 - 16:30 Digital
Dienstag 27.04. 13:15 - 16:30 Digital

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The course provides an introduction to Python, a programming language that has become popular in the financial industry besides other quantitative fields. Participants do not need prior programming experience, though they should have successfully completed Basics of Finance or comparable courses. Prior exposure to econometrics is useful though not strictly necessary.

We will start with an introduction to programming and the basics of Python. Subsequently, the course will consist of an introduction to some of the Python packages most relevant for applications in Finance.

This course is of an applied nature, with the goal of enabling students to use Python to solve problems they may encounter in practice. The course inevitably requires a steep learning curve.

Main Topics of the Course:

1. Python and Programming Basics
2. Numerical Computing with NumPy
3. Data Analysis with pandas
4. Regression Analysis with statsmodels and linearmodels

Furthermore, data visualization with matplotlib will be part of all chapters.

Art der Leistungskontrolle und erlaubte Hilfsmittel

The grade will be based on homework exercises that participants are expected to present in class, active class participation, and a final exam.

Mindestanforderungen und Beurteilungsmaßstab

60% homework exercises
10% active class participation
30% final exam

Minimum requirement for a positive grade: a total of 50%.

Prüfungsstoff

All material covered in class.

Literatur

Main reference:

Sheppard, Kevin. Introduction to Python for Econometrics, Statistics and Data Analysis, 2020. https://www.kevinsheppard.com/files/teaching/python/notes/python_introduction_2020.pdf

McKenney, Wes. Python for Data Analysis, 2nd edition, 2017. O'Reilly Media.

Official Python documentation and tutorials: https://docs.python.org/3/tutorial/index.html

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 03.05.2021 11:07