Universität Wien FIND

Auf Grund der COVID-19 Pandemie kann es bei Lehrveranstaltungen und Prüfungen auch kurzfristig zu Änderungen kommen. Informieren Sie sich laufend in u:find und checken Sie regelmäßig Ihre E-Mails.

Lesen Sie bitte die Informationen auf https://studieren.univie.ac.at/info.

040195 KU Data Analysis on Organization and Personell (MA) (2017W)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 30 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Donnerstag 05.10. 09:45 - 11:15 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Donnerstag 05.10. 11:30 - 13:00 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Donnerstag 12.10. 09:45 - 11:15 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Donnerstag 12.10. 11:30 - 13:00 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Donnerstag 19.10. 09:45 - 11:15 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Donnerstag 19.10. 11:30 - 13:00 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Donnerstag 09.11. 09:45 - 11:15 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Donnerstag 09.11. 11:30 - 13:00 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Donnerstag 16.11. 09:45 - 11:15 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Donnerstag 16.11. 11:30 - 13:00 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Donnerstag 23.11. 09:45 - 16:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Summary: “This course emphasizes statistical methods for analyzing data used by social scientists. Topics include simple and multiple regression analyses and the various methods of detecting and correcting data problems.”
Goal: Upon completion of the course, students will be able to undertake regression analysis and inference on a variety of hypotheses involving cross-sectional and time series data.
This course introduces students to regression tools for analyzing data in economics, finance and related disciplines. Extensions include regression with discrete random variables, instrumental variables regression, quasi-experiments, and regression with time series data. The objective of the course is for the student to learn how to conduct – and how to critique – empirical studies in economics, finance and related fields. Accordingly, the emphasis of the course is on empirical applications. The mathematics of econometrics will be introduced only as needed and will not be a central focus.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Your final grade is determined by your performance on the quizzes, assignments, final essay, class attendance and participation. Grades will be reduced for absence.
Exams consist of essay type questions. Make-up exams will not be given unless the student has a medical or other serious reason.
Students should hand in homework assignments before class on the day they are due. Assignments will be distributed in class or on line. each student must write up his or her answers separately.

Passing grades can generally not be earned by students who miss more than 10% of the total class-time.
Exam review is possible during regular semester time by appointment.

Mindestanforderungen und Beurteilungsmaßstab

Goal: Upon completion of the course, students will be able to undertake regression analysis and inference on a variety of hypotheses involving cross-sectional and time series data.
This course introduces students to regression tools for analyzing data in economics, finance and related disciplines. Extensions include regression with discrete random variables, instrumental variables regression, quasi-experiments, and regression with time series data. The objective of the course is for the student to learn how to conduct – and how to critique – empirical studies in economics, finance and related fields. Accordingly, the emphasis of the course is on empirical applications. The mathematics of econometrics will be introduced only as needed and will not be a central focus.

Prüfungsstoff

quiz, assignments, final essay, class attendance and participation.

Literatur

Required Texts:
Jeffrey Wooldridge, Introductory Econometrics, A Modern Approach, 4th edition, South-Western Cengage Learning Co. 2013.
Software:
The course statistical software is STATA, which is available on the computer lab. The data for the problem sets will be posted on the course Web page. You may purchase STATA through www.stata.com at an academic price but this is strictly optional.
http://www.stata.com/order/new/edu/gradplans/student-pricing/ (Small Stata 13, student version, $35 – 49).

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 07.09.2020 15:28