051131 UE Einführende Statistik (2021W)
Prüfungsimmanente Lehrveranstaltung
Labels
DIGITAL
Zusammenfassung
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 13.09.2021 09:00 bis Mo 20.09.2021 09:00
- Abmeldung bis Do 14.10.2021 23:59
An/Abmeldeinformationen sind bei der jeweiligen Gruppe verfügbar.
Gruppen
Gruppe 1
max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: Moodle
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Freitag
01.10.
11:30 - 12:15
Digital
Freitag
08.10.
11:30 - 12:15
Digital
Freitag
15.10.
11:30 - 12:15
Digital
Freitag
22.10.
11:30 - 12:15
Digital
Freitag
29.10.
11:30 - 12:15
Digital
Freitag
05.11.
11:30 - 12:15
Digital
Freitag
12.11.
11:30 - 12:15
Digital
Freitag
19.11.
11:30 - 12:15
Digital
Freitag
26.11.
11:30 - 12:15
Digital
Freitag
03.12.
11:30 - 12:15
Digital
Freitag
10.12.
11:30 - 12:15
Digital
Freitag
17.12.
11:30 - 12:15
Digital
Freitag
07.01.
11:30 - 12:15
Digital
Freitag
14.01.
11:30 - 12:15
Digital
Freitag
21.01.
11:30 - 12:15
Digital
Freitag
28.01.
11:30 - 12:15
Digital
Art der Leistungskontrolle und erlaubte Hilfsmittel
Als Softwarewerkzeug wird im Rahmen der Übung R eingesetzt, für die Abgabe und Präsentation der Beispiele werden Jupyter-Notebooks mit IRkernel verwendet.Es gibt insgesamt 10 Aufgabenblätter mit zu lösenden Aufgaben. 50 % der Gesamtbewertung werden für das beste Ergebnis bei Präsentationen von Beispielen der ersten 5 Blätter vergeben, 50 % für das beste Ergebnis für die restlichen 5 Blätter. Für ein bestimmtes Aufgabenblatt kann maximal eine Aufgabe präsentiert werden. Alle Beispiele sind sowohl manuell in Markdown und LaTeX als auch mit Hilfe von R zu lösen, ausser es ist für ein Beispiel explizit anders vermerkt.
Prüfungsstoff
Es werden Aufgabenblätter zu folgenden Inhalten durchgenommen: Kombinatorik, Laplace-Wahrscheinlichkeiten, Bedingte Wahrscheinlichkeiten und Unabhängigkeit, Zufallsvariablen und ihre Verteilungen, Erwartungswert und Varianz, Mehrdimensionale Zufallsvariablen, Schätzverfahren, Testverfahren 1, Testverfahren 2, Regressionsanalyse.
Literatur
- L. Fahrmeir et al. Statistik. Der Weg zur Datenanalyse. Springer, 2016.
- J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
- P. Dalgaard. Introductory Statistics with R. Springer, 2008.
- A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
- M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
- R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
- R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
- J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
- P. Dalgaard. Introductory Statistics with R. Springer, 2008.
- A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
- M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
- R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
- R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
Gruppe 2
max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: Moodle
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Freitag
01.10.
12:15 - 13:00
Digital
Freitag
08.10.
12:15 - 13:00
Digital
Freitag
15.10.
12:15 - 13:00
Digital
Freitag
22.10.
12:15 - 13:00
Digital
Freitag
29.10.
12:15 - 13:00
Digital
Freitag
05.11.
12:15 - 13:00
Digital
Freitag
12.11.
12:15 - 13:00
Digital
Freitag
19.11.
12:15 - 13:00
Digital
Freitag
26.11.
12:15 - 13:00
Digital
Freitag
03.12.
12:15 - 13:00
Digital
Freitag
10.12.
12:15 - 13:00
Digital
Freitag
17.12.
12:15 - 13:00
Digital
Freitag
07.01.
12:15 - 13:00
Digital
Freitag
14.01.
12:15 - 13:00
Digital
Freitag
21.01.
12:15 - 13:00
Digital
Freitag
28.01.
12:15 - 13:00
Digital
Art der Leistungskontrolle und erlaubte Hilfsmittel
Als Softwarewerkzeug wird im Rahmen der Übung R eingesetzt, für die Abgabe und Präsentation der Beispiele werden Jupyter-Notebooks mit IRkernel verwendet.Es gibt insgesamt 10 Aufgabenblätter mit zu lösenden Aufgaben. 50 % der Gesamtbewertung werden für das beste Ergebnis bei Präsentationen von Beispielen der ersten 5 Blätter vergeben, 50 % für das beste Ergebnis für die restlichen 5 Blätter. Für ein bestimmtes Aufgabenblatt kann maximal eine Aufgabe präsentiert werden. Alle Beispiele sind sowohl manuell in Markdown und LaTeX als auch mit Hilfe von R zu lösen, ausser es ist für ein Beispiel explizit anders vermerkt.
Prüfungsstoff
Es werden Aufgabenblätter zu folgenden Inhalten durchgenommen: Kombinatorik, Laplace-Wahrscheinlichkeiten, Bedingte Wahrscheinlichkeiten und Unabhängigkeit, Zufallsvariablen und ihre Verteilungen, Erwartungswert und Varianz, Mehrdimensionale Zufallsvariablen, Schätzverfahren, Testverfahren 1, Testverfahren 2, Regressionsanalyse.
Literatur
- L. Fahrmeir et al. Statistik. Der Weg zur Datenanalyse. Springer, 2016.
- J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
- P. Dalgaard. Introductory Statistics with R. Springer, 2008.
- A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
- M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
- R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
- R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
- J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
- P. Dalgaard. Introductory Statistics with R. Springer, 2008.
- A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
- M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
- R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
- R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
Gruppe 3
max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: Moodle
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Freitag
01.10.
13:15 - 14:00
Digital
Freitag
08.10.
13:15 - 14:00
Digital
Freitag
15.10.
13:15 - 14:00
Digital
Freitag
22.10.
13:15 - 14:00
Digital
Freitag
29.10.
13:15 - 14:00
Digital
Freitag
05.11.
13:15 - 14:00
Digital
Freitag
12.11.
13:15 - 14:00
Digital
Freitag
19.11.
13:15 - 14:00
Digital
Freitag
26.11.
13:15 - 14:00
Digital
Freitag
03.12.
13:15 - 14:00
Digital
Freitag
10.12.
13:15 - 14:00
Digital
Freitag
17.12.
13:15 - 14:00
Digital
Freitag
07.01.
13:15 - 14:00
Digital
Freitag
14.01.
13:15 - 14:00
Digital
Freitag
21.01.
13:15 - 14:00
Digital
Freitag
28.01.
13:15 - 14:00
Digital
Art der Leistungskontrolle und erlaubte Hilfsmittel
Als Softwarewerkzeug wird im Rahmen der Übung R eingesetzt, für die Abgabe und Präsentation der Beispiele werden Jupyter-Notebooks mit IRkernel verwendet.Es gibt insgesamt 10 Aufgabenblätter mit zu lösenden Aufgaben. 50 % der Gesamtbewertung werden für das beste Ergebnis bei Präsentationen von Beispielen der ersten 5 Blätter vergeben, 50 % für das beste Ergebnis für die restlichen 5 Blätter. Für ein bestimmtes Aufgabenblatt kann maximal eine Aufgabe präsentiert werden. Alle Beispiele sind sowohl manuell in Markdown und LaTeX als auch mit Hilfe von R zu lösen, ausser es ist für ein Beispiel explizit anders vermerkt.
Prüfungsstoff
Es werden Aufgabenblätter zu folgenden Inhalten durchgenommen: Kombinatorik, Laplace-Wahrscheinlichkeiten, Bedingte Wahrscheinlichkeiten und Unabhängigkeit, Zufallsvariablen und ihre Verteilungen, Erwartungswert und Varianz, Mehrdimensionale Zufallsvariablen, Schätzverfahren, Testverfahren 1, Testverfahren 2, Regressionsanalyse.
Literatur
- L. Fahrmeir et al. Statistik. Der Weg zur Datenanalyse. Springer, 2016.
- J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
- P. Dalgaard. Introductory Statistics with R. Springer, 2008.
- A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
- M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
- R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
- R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
- J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
- P. Dalgaard. Introductory Statistics with R. Springer, 2008.
- A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
- M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
- R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
- R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
Gruppe 4
max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: Moodle
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Freitag
01.10.
14:00 - 14:45
Digital
Freitag
08.10.
14:00 - 14:45
Digital
Freitag
15.10.
14:00 - 14:45
Digital
Freitag
22.10.
14:00 - 14:45
Digital
Freitag
29.10.
14:00 - 14:45
Digital
Freitag
05.11.
14:00 - 14:45
Digital
Freitag
12.11.
14:00 - 14:45
Digital
Freitag
19.11.
14:00 - 14:45
Digital
Freitag
26.11.
14:00 - 14:45
Digital
Freitag
03.12.
14:00 - 14:45
Digital
Freitag
10.12.
14:00 - 14:45
Digital
Freitag
17.12.
14:00 - 14:45
Digital
Freitag
07.01.
14:00 - 14:45
Digital
Freitag
14.01.
14:00 - 14:45
Digital
Freitag
21.01.
14:00 - 14:45
Digital
Freitag
28.01.
14:00 - 14:45
Digital
Art der Leistungskontrolle und erlaubte Hilfsmittel
Als Softwarewerkzeug wird im Rahmen der Übung R eingesetzt, für die Abgabe und Präsentation der Beispiele werden Jupyter-Notebooks mit IRkernel verwendet.Es gibt insgesamt 10 Aufgabenblätter mit zu lösenden Aufgaben. 50 % der Gesamtbewertung werden für das beste Ergebnis bei Präsentationen von Beispielen der ersten 5 Blätter vergeben, 50 % für das beste Ergebnis für die restlichen 5 Blätter. Für ein bestimmtes Aufgabenblatt kann maximal eine Aufgabe präsentiert werden. Alle Beispiele sind sowohl manuell in Markdown und LaTeX als auch mit Hilfe von R zu lösen, ausser es ist für ein Beispiel explizit anders vermerkt.
Prüfungsstoff
Es werden Aufgabenblätter zu folgenden Inhalten durchgenommen: Kombinatorik, Laplace-Wahrscheinlichkeiten, Bedingte Wahrscheinlichkeiten und Unabhängigkeit, Zufallsvariablen und ihre Verteilungen, Erwartungswert und Varianz, Mehrdimensionale Zufallsvariablen, Schätzverfahren, Testverfahren 1, Testverfahren 2, Regressionsanalyse.
Literatur
- L. Fahrmeir et al. Statistik. Der Weg zur Datenanalyse. Springer, 2016.
- J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
- P. Dalgaard. Introductory Statistics with R. Springer, 2008.
- A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
- M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
- R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
- R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
- J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
- P. Dalgaard. Introductory Statistics with R. Springer, 2008.
- A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
- M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
- R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
- R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
Gruppe 5
max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: Moodle
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Montag
04.10.
11:30 - 12:15
Digital
Montag
11.10.
11:30 - 12:15
Digital
Montag
18.10.
11:30 - 12:15
Digital
Montag
25.10.
11:30 - 12:15
Digital
Montag
08.11.
11:30 - 12:15
Digital
Montag
15.11.
11:30 - 12:15
Digital
Montag
22.11.
11:30 - 12:15
Digital
Montag
29.11.
11:30 - 12:15
Digital
Montag
06.12.
11:30 - 12:15
Digital
Montag
13.12.
11:30 - 12:15
Digital
Montag
10.01.
11:30 - 12:15
Digital
Montag
17.01.
11:30 - 12:15
Digital
Montag
24.01.
11:30 - 12:15
Digital
Montag
31.01.
11:30 - 12:15
Digital
Art der Leistungskontrolle und erlaubte Hilfsmittel
Als Softwarewerkzeug wird im Rahmen der Übung R eingesetzt, für die Abgabe und Präsentation der Beispiele werden Jupyter-Notebooks mit IRkernel verwendet.
Es gibt insgesamt 10 Aufgabenblätter mit zu lösenden Aufgaben. 50 % der Gesamtbewertung werden für das beste Ergebnis bei Präsentationen von Beispielen der ersten 5 Blätter vergeben, 50 % für das beste Ergebnis für die restlichen 5 Blätter. Für ein bestimmtes Aufgabenblatt kann maximal eine Aufgabe präsentiert werden. Alle Beispiele sind sowohl manuell in Markdown und LaTeX als auch mit Hilfe von R zu lösen, ausser es ist für ein Beispiel explizit anders vermerkt.
Es gibt insgesamt 10 Aufgabenblätter mit zu lösenden Aufgaben. 50 % der Gesamtbewertung werden für das beste Ergebnis bei Präsentationen von Beispielen der ersten 5 Blätter vergeben, 50 % für das beste Ergebnis für die restlichen 5 Blätter. Für ein bestimmtes Aufgabenblatt kann maximal eine Aufgabe präsentiert werden. Alle Beispiele sind sowohl manuell in Markdown und LaTeX als auch mit Hilfe von R zu lösen, ausser es ist für ein Beispiel explizit anders vermerkt.
Prüfungsstoff
Es werden Aufgabenblätter zu folgenden Inhalten durchgenommen: Kombinatorik, Laplace-Wahrscheinlichkeiten, Bedingte Wahrscheinlichkeiten und Unabhängigkeit, Zufallsvariablen und ihre Verteilungen, Erwartungswert und Varianz, Mehrdimensionale Zufallsvariablen, Schätzverfahren, Testverfahren 1, Testverfahren 2, Regressionsanalyse.
Literatur
L. Fahrmeir et al. Statistik. Der Weg zur Datenanalyse. Springer, 2016.
J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
P. Dalgaard. Introductory Statistics with R. Springer, 2008.
A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
P. Dalgaard. Introductory Statistics with R. Springer, 2008.
A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
Gruppe 6
max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: Moodle
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Montag
04.10.
12:15 - 13:00
Digital
Montag
11.10.
12:15 - 13:00
Digital
Montag
18.10.
12:15 - 13:00
Digital
Montag
25.10.
12:15 - 13:00
Digital
Montag
08.11.
12:15 - 13:00
Digital
Montag
15.11.
12:15 - 13:00
Digital
Montag
22.11.
12:15 - 13:00
Digital
Montag
29.11.
12:15 - 13:00
Digital
Montag
06.12.
12:15 - 13:00
Digital
Montag
13.12.
12:15 - 13:00
Digital
Montag
10.01.
12:15 - 13:00
Digital
Montag
17.01.
12:15 - 13:00
Digital
Montag
24.01.
12:15 - 13:00
Digital
Montag
31.01.
12:15 - 13:00
Digital
Art der Leistungskontrolle und erlaubte Hilfsmittel
Als Softwarewerkzeug wird im Rahmen der Übung R eingesetzt, für die Abgabe und Präsentation der Beispiele werden Jupyter-Notebooks mit IRkernel verwendet.
Es gibt insgesamt 10 Aufgabenblätter mit zu lösenden Aufgaben. 50 % der Gesamtbewertung werden für das beste Ergebnis bei Präsentationen von Beispielen der ersten 5 Blätter vergeben, 50 % für das beste Ergebnis für die restlichen 5 Blätter. Für ein bestimmtes Aufgabenblatt kann maximal eine Aufgabe präsentiert werden. Alle Beispiele sind sowohl manuell in Markdown und LaTeX als auch mit Hilfe von R zu lösen, ausser es ist für ein Beispiel explizit anders vermerkt.
Es gibt insgesamt 10 Aufgabenblätter mit zu lösenden Aufgaben. 50 % der Gesamtbewertung werden für das beste Ergebnis bei Präsentationen von Beispielen der ersten 5 Blätter vergeben, 50 % für das beste Ergebnis für die restlichen 5 Blätter. Für ein bestimmtes Aufgabenblatt kann maximal eine Aufgabe präsentiert werden. Alle Beispiele sind sowohl manuell in Markdown und LaTeX als auch mit Hilfe von R zu lösen, ausser es ist für ein Beispiel explizit anders vermerkt.
Prüfungsstoff
Es werden Übungsblätter zu folgenden Inhalten durchgenommen: Kombinatorik, Laplace-Wahrscheinlichkeiten, Bedingte Es werden Aufgabenblätter zu folgenden Inhalten durchgenommen: Kombinatorik, Laplace-Wahrscheinlichkeiten, Bedingte Wahrscheinlichkeiten und Unabhängigkeit, Zufallsvariablen und ihre Verteilungen, Erwartungswert und Varianz, Mehrdimensionale Zufallsvariablen, Schätzverfahren, Testverfahren 1, Testverfahren 2, Regressionsanalyse.
Literatur
L. Fahrmeir et al. Statistik. Der Weg zur Datenanalyse. Springer, 2016.
J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
P. Dalgaard. Introductory Statistics with R. Springer, 2008.
A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
J. Bleymüller, R. Weißbach, A. Dörre. Statistik für Wirtschaftswissenschaftler. Vahlen, 2020.
P. Dalgaard. Introductory Statistics with R. Springer, 2008.
A. Field, J. Miles. Discovering Statistics Using R. SAGE Publications Ltd, 2012.
M. J. Crawley. Statistics: An Introduction Using R. Wiley, 2014
R. M. Heiberger, B. Holland. Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Springer, 2015.
R. Stinerock. Statistics with R: A Beginner's Guide. SAGE Publications Ltd, 2018.
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Die Studierenden verfügen über Fähigkeiten empirische Sachverhalte mittels statistischer Basistechniken zu beschreiben und graphisch korrekt zu repräsentieren; sowie über ein prinzipielles Verständnis für die grundlegenden Konzepte der Wahrscheinlichkeitstheorie und der inferenzstatistischen Modellierung und Methodik. Die Studierenden sind in der Lage inhaltliche Fragestellungen in statistische Modelle zu übersetzen und diese mittels adäquater Techniken der Inferenzstatistik korrekt zu beantworten. Dabei können sie moderne Softwarewerkzeuge für Analytik und Visualisierung zur Beantwortung datenanalytischer Fragestellungen erfolgreich anwenden. Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.
Mindestanforderungen und Beurteilungsmaßstab
Diese Lehrveranstaltung wird digital über ZOOM abgehalten.Die Aufgabenblätter werden als Jupyter-Notebooks über Moodle-Aufgaben zur Verfügung gestellt und müssen bis zur angegebenen Frist abgegeben werden. Nach jeder Deadline wird eine Lösung für jede Aufgabe zufällig ausgewählt, wobei Studierende mit einem niedrigeren bisher erreichten Prozentanteil (0 % - 50 %) für diesen Bewertungsaspekt priorisiert werden. Die ausgewählten Studierenden werden kontaktiert und präsentieren ihr Beispiel in der Übung.Die Notenskala lautet wie folgt: 1: zumindest 90 %, 2: zumindest 80 %, 3: zumindest 65 %, 4: zumindest 50 %.
Zuordnung im Vorlesungsverzeichnis
Module: DAS EST UF-INF-12
Letzte Änderung: Do 23.03.2023 00:15