Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

052101 VU Numerical Algorithms (2023W)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 50 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Donnerstag 05.10. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
  • Donnerstag 12.10. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
  • Donnerstag 19.10. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
  • Donnerstag 09.11. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
  • Donnerstag 16.11. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
  • Donnerstag 23.11. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
  • Donnerstag 30.11. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
  • Donnerstag 07.12. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
  • Donnerstag 14.12. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
  • Donnerstag 11.01. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
  • Donnerstag 18.01. 09:45 - 11:15 PC-Unterrichtsraum 4, Währinger Straße 29 1.OG
    PC-Unterrichtsraum 5, Währinger Straße 29 2.OG
  • Donnerstag 25.01. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Get acquainted with fundamental concepts of numerical algorithms (approximations in numerical computation, conditioning, numerical stability) and with techniques for the analysis of numerical algorithms (perturbation theory). Study selected numerical algorithms in detail, in particular solvers for large dense and sparse linear systems. Understand the interdependencies between problem data, numerical algorithm, implementation of the algorithm, hardware, performance and accuracy.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Three sets of homework problems applying concepts from class (with programming components - implementation, experimentation, analysis); selected presentations of your own solution to homework problems in class, four (unannounced) quizzes in class (little questions about the contents of earlier classes, only a small part of the available points); written test at the end of the semester.

This class will be given on-site. Attendance is at least required for the discussion of homeworks and for the written test. Since quizzes are unannounced, missing a class may lead to missing a quiz without opportunity to re-do it.

Large language model assistance (e.g., using ChatGPT) is partly integrated in the homework problems. In any case, you always need to declare explicitly in your submissions whether and how you used such tools in your homeworks.

You are welcome to orally discuss the homework problems among each other, but the homeworks are not group work, but are designed such that every student needs to individually produce and submit his/her own implementation and report.

Mindestanforderungen und Beurteilungsmaßstab

PLEASE NOTE: You have to be present and sign in the first class in order to guarantee your fixed spot in the course! If you are not present in the first class you will be signed out to make space for other students currently on the waiting list. If you are present and sign in the first class but decide later to drop the course, you can do so until 14.10..

Grading:
Maximum number of points for the three homework problems: 30 points (10 points per homework)
Maximum number of points for the (unannounced quizzes): 12 points (3 points per quiz)
Maximum number of points for the written test: 38 points

Your final grade is based on how many points you achieve for each homework problem, for the quizzes and for the test. At least half of the maximum possible total number of points (40 points) is required for passing the course. This semester, there will not be any bonus points.

Prüfungsstoff

Material presented and discussed in class and contents of homework problems.

Literatur

Lecture slides

M. T. Heath: “Scientific Computing – an Introductory Survey”

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 15.01.2024 09:25