Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
052200 VU Foundations of Computer Graphics (2020W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 14.09.2020 09:00 bis Mo 21.09.2020 09:00
- Abmeldung bis Mi 14.10.2020 23:59
Details
max. 50 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
The meeting will take place online via Moodle Collaborate.
- Donnerstag 01.10. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 06.10. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 08.10. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 13.10. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 15.10. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 20.10. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 22.10. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 27.10. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 29.10. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 03.11. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 05.11. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 10.11. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 12.11. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 17.11. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 19.11. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 24.11. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 26.11. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 01.12. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 03.12. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Donnerstag 10.12. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 15.12. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 17.12. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Donnerstag 07.01. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 12.01. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 14.01. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 19.01. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 21.01. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 26.01. 16:45 - 18:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 28.01. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Labs: 50%
Pen&Paper: 5%
Midterm: 20%
Final: 25%
---
3xCourse Feedback: 5%
Pen&Paper: 5%
Midterm: 20%
Final: 25%
---
3xCourse Feedback: 5%
Mindestanforderungen und Beurteilungsmaßstab
Pre-requirements ("Teilnahmevoraussetzungen"): StEOP, PR2, MG2, THI, MOD, ADSA minimum grade of 25% must be earned on Lab 0.
A total minimum grade of 40% must be earned on Lab 1 (1a+1b+1c combined)
A total minimum grade of 40% must be earned on Lab 2 (2a+2b combined).The grading scale for the course will be:
1: at least 87.5%
2: at least 75.0%
3: at least 60.0%
4: at least 40.0%
A total minimum grade of 40% must be earned on Lab 1 (1a+1b+1c combined)
A total minimum grade of 40% must be earned on Lab 2 (2a+2b combined).The grading scale for the course will be:
1: at least 87.5%
2: at least 75.0%
3: at least 60.0%
4: at least 40.0%
Prüfungsstoff
1. Discuss the light transport problem and its relation to numerical integration i.e., light is emitted, scatters around the scene, and is measured by the eye.
2. Describe the basic graphics pipeline and how forward and backward rendering factor in this.
3. Create a program to display 3D models of simple graphics images.
4. Derive linear perspective from similar triangles by converting points (x, y, z) to points (x/z, y/z, 1).
5. Obtain 2-dimensional and 3-dimensional points by applying affine transformations.
6. Apply 3-dimensional coordinate system and the changes required to extend 2D transformation operations to handle transformations in 3D.
7. Contrast forward and backward rendering.
8. Explain the concept and applications of texture mapping, sampling, and anti-aliasing.
9. Explain the ray tracing/rasterization duality for the visibility problem.
10. Implement simple procedures that perform transformation and clipping operations on simple 2-dimensional images.
11. Implement a simple real-time renderer using a rasterization API (e.g., OpenGL) using vertex buffers and shaders.
12. Compare and contrast the different rendering techniques.
2. Describe the basic graphics pipeline and how forward and backward rendering factor in this.
3. Create a program to display 3D models of simple graphics images.
4. Derive linear perspective from similar triangles by converting points (x, y, z) to points (x/z, y/z, 1).
5. Obtain 2-dimensional and 3-dimensional points by applying affine transformations.
6. Apply 3-dimensional coordinate system and the changes required to extend 2D transformation operations to handle transformations in 3D.
7. Contrast forward and backward rendering.
8. Explain the concept and applications of texture mapping, sampling, and anti-aliasing.
9. Explain the ray tracing/rasterization duality for the visibility problem.
10. Implement simple procedures that perform transformation and clipping operations on simple 2-dimensional images.
11. Implement a simple real-time renderer using a rasterization API (e.g., OpenGL) using vertex buffers and shaders.
12. Compare and contrast the different rendering techniques.
Literatur
Edward Angel, Dave Shreiner Interactive Computer Graphics with WebGL, 7th edition, Addison-Wesley, 2015.
Zuordnung im Vorlesungsverzeichnis
Module: VMI VIN GFX
Letzte Änderung: Fr 02.10.2020 00:04
First lecture will be publicly accessible, further details on the course website: http://vda.univie.ac.at/Teaching/Graphics/20w/schedule.html
---
Computer graphics provides the tools to model mostly 2D and 3D data and processes, to generate photo-realistic (or at least believable) or artistic renderings of the models, to interact with them through graphical user interfaces, and to create visualizations and animations for communication, education and entertainment. This course offers an introduction to the modeling and rendering aspects of computer graphics. The mathematical concepts and techniques behind the development of various computer graphics algorithms will be covered. You will also learn to implement some of these algorithms through programming assignments using WebGL (OpenGL for browsers and smart phones).
* basic raster graphics algorithms for drawing 2D primitives, antialiasing
* 2D and 3D geometrical transformations, 3D projections/viewing
* polygonal and hierarchical models
* hidden-surface removal
* basic rendering techniques (colour, shading, raytracing)
* interaction techniques
* textures