Universität Wien FIND

Jetzt impfen lassen für ein sicheres Miteinander im Herbst!

Um allen Angehörigen der Universität Wien einen guten und sicheren Semesterbeginn zu ermöglichen, gibt es von Samstag, 18. September, bis Montag, 20. September die Möglichkeit einer COVID-19-Impfung ohne Terminvereinbarung am Campus der Universität Wien. Details unter https://www.univie.ac.at/ueber-uns/weitere-informationen/coronavirus/.

Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

052300 VU Foundations of Data Analysis (2017W)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 50 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Mittwoch 04.10. 15:00 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Freitag 06.10. 13:15 - 16:30 Hörsaal 1, Währinger Straße 29 1.UG
Mittwoch 11.10. 15:00 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Freitag 13.10. 13:15 - 16:30 Hörsaal 1, Währinger Straße 29 1.UG
Mittwoch 18.10. 15:00 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Freitag 20.10. 13:15 - 16:30 Hörsaal 50 Hauptgebäude, 2.Stock, Stiege 8
Mittwoch 25.10. 15:00 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Freitag 27.10. 13:15 - 16:30 Hörsaal 1, Währinger Straße 29 1.UG
Freitag 03.11. 13:15 - 16:30 Hörsaal 1, Währinger Straße 29 1.UG
Mittwoch 08.11. 15:00 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Freitag 10.11. 13:15 - 16:30 Hörsaal 50 Hauptgebäude, 2.Stock, Stiege 8
Mittwoch 15.11. 15:00 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Freitag 17.11. 13:15 - 16:30 Hörsaal 1, Währinger Straße 29 1.UG
Mittwoch 22.11. 15:00 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Donnerstag 23.11. 16:45 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Freitag 24.11. 13:15 - 16:30 Hörsaal 50 Hauptgebäude, 2.Stock, Stiege 8
Mittwoch 29.11. 15:00 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Freitag 01.12. 13:15 - 16:30 Hörsaal 1, Währinger Straße 29 1.UG
Mittwoch 06.12. 15:00 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Mittwoch 06.12. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
Mittwoch 13.12. 15:00 - 18:15 Hörsaal 3, Währinger Straße 29 3.OG
Freitag 15.12. 13:15 - 16:30 Hörsaal 50 Hauptgebäude, 2.Stock, Stiege 8
Freitag 12.01. 13:15 - 16:30 Hörsaal 50 Hauptgebäude, 2.Stock, Stiege 8
Freitag 19.01. 13:15 - 16:30 Hörsaal 1, Währinger Straße 29 1.UG
Freitag 26.01. 13:15 - 16:30 Hörsaal 50 Hauptgebäude, 2.Stock, Stiege 8

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Today's currency is data. However, data is only useful if we are able to extract useful information from it. This is the aim of data analysis in general. This course aims to survey the foundations of data analysis. This includes concepts from statistical inference, regression analysis, classification analysis, clustering analysis, dimensionality reduction.

Concepts as well as techniques are introduced and practiced.

Art der Leistungskontrolle und erlaubte Hilfsmittel

3 labs (i.e. programming exercises including peer review), for each lab you will get a maximum of 12% of the required points.
- 3 pen and paper exercise sheets, one for each part of the VU. They serve as a preparation for the test. For each exercise sheet you will be able to get a maximum of 4% of the required points.
- 3 exams, 16% each, which amounts to 50% of the points in each part of the VU.
Furthermore you can complete:
- 1 exercise sheet to assess your current mathematical (prerequisite) knowledge.
- 3 anonymized feedbacks for each part of the VU. 3% (for a maximum of 3 feedbacks i.e. 1% for each feedback) These feedbacks can either be returned to the Tutor responsible for the lecture, or to the Professors directly in an anonymized manner.

Mindestanforderungen und Beurteilungsmaßstab

For bachelor students, the mandatory prerequisite for this class is the successful completion of the following courses:
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)

Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 - at least 60.0%
4 – at least 40.0%

Please keep in mind that in order to pass the course, you will need at least 30% of the total score in all labs and homeworks combined with 40% of the total score of the tests. Specifically, you need to need to get 14.4% points (of the whole course) from Labs A0-A6, and 19.2% of the whole course from the 3 tests.

In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.

Prüfungsstoff

1. Models, Statistical Inference, and General Techniques
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Hypothesis Testing and p-values
1.4. The Bootstrap
1.5. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Hierarchical Clustering
6.2. Model-based Clustering
6.3. Evaluation and Validation of Clustering Results
6.4. Density-based Clustering
6.5. Self Organizing Maps

Literatur

> Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2007.
> Han, Kamber: Data Mining: Concepts and Techniques, Elsevier 2012.
> Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009.
> James-Witten-Hastie-Tibshirani: An Introduction to Statistical Learning with Applications in R, Springer 2015.


Zuordnung im Vorlesungsverzeichnis

Module: FDA AKM SWI STW

Letzte Änderung: Mo 07.09.2020 15:30