052411 VU Business Intelligence I (2025S)
Prüfungsimmanente Lehrveranstaltung
Labels
Diese Lehrveranstaltung wird im SS 2023 voraussichtlich nicht stattfinden können.
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 10.02.2025 09:00 bis Fr 21.02.2025 09:00
- Abmeldung bis Fr 14.03.2025 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Freitag 07.03. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 14.03. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 21.03. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 28.03. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 04.04. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 11.04. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 02.05. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 09.05. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 16.05. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 23.05. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 30.05. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 06.06. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 13.06. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- N Freitag 20.06. 11:30 - 14:45 Seminarraum 7, Währinger Straße 29 1.OG
- Freitag 27.06. 11:30 - 13:00 Hörsaal A UniCampus Zugang Hof 2 2F-EG-32
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The grade is derived from the sum of the two parts (i.e. a maximum of 100 points in total):
* Part A: two practical assignments conducted in groups (max. 60 points)
* Part B: written exam (no aids allowed, max. 40 points).
* Part A: two practical assignments conducted in groups (max. 60 points)
* Part B: written exam (no aids allowed, max. 40 points).
Mindestanforderungen und Beurteilungsmaßstab
‣ Part A: 60% group assignments
‣ Part B: 40% written examOverall at least 50%of the points need to be achieved.The grade is calculated from the total points as follows:
>= 87,5% very good (1)
>= 75% good (2)
>= 62,5% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
‣ Part B: 40% written examOverall at least 50%of the points need to be achieved.The grade is calculated from the total points as follows:
>= 87,5% very good (1)
>= 75% good (2)
>= 62,5% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
Prüfungsstoff
* Lecture (slides)
* Exercises (theoretical and practical)
* Exercises (theoretical and practical)
Literatur
* Lecture slides
* Rick Sherman: Business Intelligence Guidebook: From Data Integration to Analytics, Morgan Kaufmann (1st edition), 2014.
* Wil van der Aalst: Process Mining – Data Science in Action (2nd edition), Springer, 2016
* Rick Sherman: Business Intelligence Guidebook: From Data Integration to Analytics, Morgan Kaufmann (1st edition), 2014.
* Wil van der Aalst: Process Mining – Data Science in Action (2nd edition), Springer, 2016
Zuordnung im Vorlesungsverzeichnis
Module: BI BI1 BUS
Letzte Änderung: Fr 07.03.2025 09:45
The goal of this course is to familiarize you with and teach you how to apply foundational concepts, modeling and analysis techniques, and tools that allow you to gain insights into the operations of organizations in a data-driven manner.The content of the course consists of:
- Foundational concepts for business intelligence (BI)
- Architectures and modeling techniques for data preparation and integration in BI settings
- How to take a process-oriented view on organizational operations
- Data-driven analysis of organizational processes using process mining
- Using BI and process mining tools to analyze real-world dataStudents, attending the course, are expected to have knowledge in the following topics:
* Basic knowledge of Python 3Knowledge about data modeling (e.g., entity-relationship models) and process modeling (e.g., Petri nets or BPMN) is helpful but not mandatory.