053622 VU Visual and Exploratory Data Analysis (2021S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 15.02.2021 09:00 bis Mo 22.02.2021 09:00
- Abmeldung bis So 14.03.2021 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
This course will be online via zoom on the moodle platform: https://moodle.univie.ac.at/course/view.php?id=209233
The first meeting (Vorbesprechung) on Tue, March 1st, at 4:45pm, will happen via zoom at https://univienna.zoom.us/j/95877235029?pwd=YncwWVVSY0cybTRTZWhCVDdqcG5QUT09
Passcode: VIS21s
Montag
01.03.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
(Vorbesprechung)
Montag
08.03.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Donnerstag
11.03.
13:15 - 14:45
Seminarraum 5, Währinger Straße 29 1.UG
Montag
15.03.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Donnerstag
18.03.
16:45 - 18:15
Seminarraum 9, Währinger Straße 29 2.OG
Montag
22.03.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Montag
12.04.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Montag
19.04.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Donnerstag
22.04.
13:15 - 14:45
Seminarraum 5, Währinger Straße 29 1.UG
Montag
26.04.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Montag
03.05.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Montag
10.05.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Montag
17.05.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Montag
31.05.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Montag
07.06.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Montag
14.06.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Montag
21.06.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Montag
28.06.
16:45 - 18:15
Seminarraum 4, Währinger Straße 29 1.UG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
handing in of homework, 5x assignments
participation
test
participation
test
Mindestanforderungen und Beurteilungsmaßstab
There is no formal prerequisite. However, there are programming assignments in javascript/D3 that you will be graded on, so we expect programming skills.The grading scale for the course will be:
1: at least 87.5%
2: at least 75.0%
3: at least 62.5%
4: at least 50.0%In order to pass the course successfully, you will need to reach a minimum of 50% on all assignments combined, 25% of the points on the last assignment, as well as a minimum of 40% on the test.
1: at least 87.5%
2: at least 75.0%
3: at least 62.5%
4: at least 50.0%In order to pass the course successfully, you will need to reach a minimum of 50% on all assignments combined, 25% of the points on the last assignment, as well as a minimum of 40% on the test.
Prüfungsstoff
applied exercises and tasks
readings
readings
Literatur
T. Munzner: Visualization Analysis & Design: Abstractions, Principles, and Methods, CRC Press, 2014various papers as presented on the course page
Zuordnung im Vorlesungsverzeichnis
Modul: VED
Letzte Änderung: Do 08.09.2022 00:15
* Visual design principles and the visualization pipeline
* Design studies
* Data acquisition and representation
* Basic visual mapping concepts (marks + channels)
* Human visual perception + Color
* Visual mappings for tables and multi/high-dimensional data
* Visual mappings for networks, graphs and trees
* Visual mappings and algorithms for 2D+3D scalar, vector, and tensor fields
* Visual mappings for text data
* Principles of multiple coordinated views
* Data interaction principles including Brushing+Linking, Navigation+Zoom , Focus+context
* Principles of Evaluation of visual analysis systems
* some selected advanced topicCourse-specific goals -- students can:
* represent and interact with various data visually
* evaluate visual depictions of data and possible find improved presentations
* assist users in visual data analysis
* use different visual analysis tools, like Tableau
* use D3 to create interactive web-visualization environmentsGeneral goals -- students gain:
* insight into a new discipline and extend their scientific horizons
* an appreciation for the interplay of mathematical analysis and user-centered design
* experience working in a team