053622 VU Visual and Exploratory Data Analysis (2022S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 14.02.2022 09:00 bis Do 24.02.2022 10:00
- Abmeldung bis Mo 14.03.2022 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Dienstag
01.03.
11:30 - 13:00
Seminarraum 7, Währinger Straße 29 1.OG
Freitag
04.03.
11:30 - 13:00
Hörsaal 3, Währinger Straße 29 3.OG
Dienstag
08.03.
11:30 - 13:00
Seminarraum 7, Währinger Straße 29 1.OG
Dienstag
15.03.
11:30 - 13:00
Digital
Freitag
18.03.
11:30 - 13:00
Hörsaal 3, Währinger Straße 29 3.OG
Dienstag
22.03.
11:30 - 13:00
Digital
Freitag
25.03.
11:30 - 13:00
Hörsaal 3, Währinger Straße 29 3.OG
Dienstag
29.03.
11:30 - 13:00
Digital
Freitag
01.04.
11:30 - 13:00
Hörsaal 3, Währinger Straße 29 3.OG
Dienstag
05.04.
11:30 - 13:00
Seminarraum 7, Währinger Straße 29 1.OG
Freitag
08.04.
11:30 - 13:00
Hörsaal 3, Währinger Straße 29 3.OG
Dienstag
26.04.
11:30 - 13:00
Seminarraum 7, Währinger Straße 29 1.OG
Freitag
29.04.
11:30 - 13:00
Hörsaal 3, Währinger Straße 29 3.OG
Dienstag
03.05.
11:30 - 13:00
Seminarraum 7, Währinger Straße 29 1.OG
Freitag
06.05.
11:30 - 13:00
Hörsaal 3, Währinger Straße 29 3.OG
Dienstag
10.05.
11:30 - 13:00
Seminarraum 7, Währinger Straße 29 1.OG
Dienstag
17.05.
11:30 - 13:00
Digital
Dienstag
24.05.
11:30 - 13:00
Digital
Dienstag
31.05.
11:30 - 13:00
Digital
Dienstag
14.06.
11:30 - 13:00
Seminarraum 7, Währinger Straße 29 1.OG
Dienstag
21.06.
11:30 - 13:00
Seminarraum 7, Währinger Straße 29 1.OG
Dienstag
28.06.
11:30 - 13:00
Seminarraum 7, Währinger Straße 29 1.OG
Freitag
01.07.
09:45 - 16:30
Hörsaal 2, Währinger Straße 29 2.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
handing in of homework, 5x assignments
participation
test
participation
test
Mindestanforderungen und Beurteilungsmaßstab
There is no formal prerequisite. However, there are programming assignments in javascript/D3 that you will be graded on, so we expect programming skills.The grading scale for the course will be:
1: at least 87.5%
2: at least 75.0%
3: at least 62.5%
4: at least 50.0%In order to pass the course successfully, you will need to reach a minimum of 50% on all assignments combined, 25% of the points on the last assignment, as well as a minimum of 40% on the test.
1: at least 87.5%
2: at least 75.0%
3: at least 62.5%
4: at least 50.0%In order to pass the course successfully, you will need to reach a minimum of 50% on all assignments combined, 25% of the points on the last assignment, as well as a minimum of 40% on the test.
Prüfungsstoff
applied exercises and tasks
readings
readings
Literatur
T. Munzner: Visualization Analysis & Design: Abstractions, Principles, and Methods, CRC Press, 2014various papers as presented on the course page
Zuordnung im Vorlesungsverzeichnis
Modul: VED
Letzte Änderung: Do 11.05.2023 11:27
* Visual design principles and the visualization pipeline
* Design studies
* Data acquisition and representation
* Basic visual mapping concepts (marks + channels)
* Human visual perception + Color
* Visual mappings for tables and multi/high-dimensional data
* Visual mappings for networks, graphs and trees
* Visual mappings and algorithms for 2D+3D scalar, vector, and tensor fields
* Visual mappings for text data
* Principles of multiple coordinated views
* Data interaction principles including Brushing+Linking, Navigation+Zoom , Focus+context
* Principles of Evaluation of visual analysis systems
* some selected advanced topicCourse-specific goals -- students can:
* represent and interact with various data visually
* evaluate visual depictions of data and possible find improved presentations
* assist users in visual data analysis
* use different visual analysis tools, like Tableau
* use D3 to create interactive web-visualization environmentsGeneral goals -- students gain:
* insight into a new discipline and extend their scientific horizons
* an appreciation for the interplay of mathematical analysis and user-centered design
* experience working in a team