Universität Wien FIND

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Vor-Ort-Lehre und Umstellung auf Online-Prüfungen) erforderlich sein. Melden Sie sich für Lehrveranstaltungen/Prüfungen über u:space an, informieren Sie sich über den aktuellen Stand auf u:find und auf der Lernplattform moodle. ACHTUNG: Lehrveranstaltungen, bei denen zumindest eine Einheit vor Ort stattfindet, werden in u:find momentan mit "vor Ort" gekennzeichnet.

Regelungen zum Lehrbetrieb vor Ort inkl. Eintrittstests finden Sie unter https://studieren.univie.ac.at/info.

180030 VO Ethics of Artificial Intelligence (2020S)

5.00 ECTS (2.00 SWS), SPL 18 - Philosophie

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first serve").

Details

Sprache: Englisch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

2nd exam: 6.10.2020, 16:45 - 18:15 (Digital over Moodle)
See online exam information below.

Dienstag 10.03. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 17.03. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 24.03. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 31.03. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 21.04. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 28.04. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 05.05. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 12.05. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 19.05. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 26.05. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 09.06. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 23.06. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Dienstag 30.06. 16:45 - 18:15 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This course aims to introduce students to central issues in the ethics of artificial intelligence. The students will be asked to engage with ethical issues and discussions of policy challenges offered in the lectures. At the end of the course they should have excellent knowledge of the main ethical issues and be able to apply this knowledge to better understand and contribute to discussions about the technology.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Assessment: written exam.

Mindestanforderungen und Beurteilungsmaßstab

At the end of the course students should have excellent knowledge of the ethical issues raised by artificial intelligence.

Prüfungsstoff

Online exam
➢ Exam content
Content delivered in the lectures, lecture slides
Coeckelbergh, Mark. AI Ethics. MIT Press. 2020.
Additional literature on Moodle (not obligatory!)
➢ Requirements
At the end of the course students should have excellent knowledge of the main themes and approaches and be able to apply these to specific issues and AI technologies/media, taking into account actual and recent discussions about AI.
➢ Assessment
Written, open book exam: mini essay
Students are allowed to use all the material provided via Moodle (according to good scientific practice, see below) in order to complete the task. Thus, the focus is not on the reproduction of knowledge but on the critical discussion of the approaches and texts that have been discussed in the lecture and on the application of these to specific issues and technologies/media.
➢ Assessment scale
The candidate makes a very original contribution to thinking about the particular theme and technology/media they have chosen by applying the course material and even moves beyond the material provided. They eloquently articulate their own thesis and ideas about this philosophical issue. Their arguments are clear and convincing and the essay is coherent and well-structured. 1
The candidate knows how to apply the theory about AI ethics in a very good way. They successfully use the material offered in the course to analyse and discuss the philosophical problem and technology/media. In general, the essay is coherent and convincing. Minor shortcomings mainly consist in a lack of originality and coherence. 2
The candidate can apply the theory about AI ethics in a satisfactory manner. They use the material offered in the course to analyse and discuss the philosophical problem and technology/media but various aspects could be improved in terms of originality, clarity and coherence. 3
The candidate shows some kind of knowledge related to the course and their application of the theory to the issue and the technology they have chosen is appropriate. In general, however, good and convincing arguments are missing. The student rather reproduces their knowledge from the course than presenting their own thesis and arguments with regard to the essay task. 4
The student does not show sufficient knowledge about the course content and fails to apply the theory about AI ethics to a particular technology/medium and philosophical issue. The essay lacks convincing arguments, clarity, coherence and a clear relation to the course. 5

Exam procedure:
You must be correctly REGISTERED for this exam VIA U:SPACE!
➢ Task
Online EXAM
The exam sheet, including the essay task, will be uploaded to Moodle shortly before the exam begins at the top of the section “Exam”. You can then download the exam sheet (as Word Doc) and will be asked to fill in your student details and to complete the essay task. → for further details see info sheet on Moodle!
➢ Time
90 min
➢ Handing in the exam
As soon as you have finished your essay, please make sure you have filled in the student details on the cover sheet and convert the document into a PDF. Upload this PDF to Moodle under the same icon where the task appeared: “Online EXAM”. We cannot accept exam sheets that have been uploaded later than within the specified time period.

Lectures, book, and further reading materials.

Literatur

Coeckelbergh, M. 2020. AI Ethics. MIT Press.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Di 01.12.2020 14:28