Universität Wien FIND

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Vor-Ort-Lehre und Umstellung auf Online-Prüfungen) erforderlich sein. Melden Sie sich für Lehrveranstaltungen/Prüfungen über u:space an, informieren Sie sich über den aktuellen Stand auf u:find und auf der Lernplattform moodle. ACHTUNG: Lehrveranstaltungen, bei denen zumindest eine Einheit vor Ort stattfindet, werden in u:find momentan mit "vor Ort" gekennzeichnet.

Regelungen zum Lehrbetrieb vor Ort inkl. Eintrittstests finden Sie unter https://studieren.univie.ac.at/info.

200030 UE Übungen zur Statistik (2021S)

6.00 ECTS (2.00 SWS), SPL 20 - Psychologie
Prüfungsimmanente Lehrveranstaltung
DIGITAL

Di 22.06. 15:00-16:30 Digital

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first serve").

Details

max. 40 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Dienstag 16.03. 15:00 - 16:30 Digital
Dienstag 23.03. 15:00 - 16:30 Digital
Dienstag 20.04. 15:00 - 16:30 Digital
Dienstag 27.04. 15:00 - 16:30 Digital
Dienstag 04.05. 15:00 - 16:30 Digital
Dienstag 11.05. 15:00 - 16:30 Digital
Dienstag 18.05. 15:00 - 16:30 Digital
Dienstag 01.06. 15:00 - 16:30 Digital
Dienstag 08.06. 15:00 - 16:30 Digital
Dienstag 15.06. 15:00 - 16:30 Digital

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Die Studierenden sollen die Fähigkeiten erwerben i) wissenschaftliche Forschungsergebnisse nachzuvollziehen, zu verstehen und kritisch zu bewerten; ii) Analysen mittels geeigneter statistischer Methoden durchzuführen und die Ergebnisse zu interpretieren. Die Vermittlung des entsprechenden Grundwissens der Statistik erfolgt anhand konkreter psychologischer Beispiele, inklusive Berechnung und mit Hilfe von JASP (https://jasp-stats.org/) und anderer Software.

Folgende Themen werden behandelt:
• Bedeutung der Statistik für die Psychologie
• Beschreibung von Daten: Aufbereitung und Darstellung von Daten mittels Tabellen, Grafiken und statistischen Kenngrößen (Deskriptivstatistik)
• Wahrscheinlichkeitstheorie und Kombinatorik
• Schließen von einer Stichprobe auf die Population, Logik der Hypothesentestung, wichtige Wahrscheinlichkeitsverteilungen und statistische Tests (Inferenzstatistik)
• Beziehungen zwischen psychologischen Merkmalsausprägungen (Korrelation, Regression)

Art der Leistungskontrolle und erlaubte Hilfsmittel

Aufgrund der aktuellen Situation bzgl. Coronavirus und der damit verbundenen Einschränkungen des Lehrbetriebs an der Universität Wien (keine Präsenzeinheiten) werden die Statistik-Übungen wie folgt adaptiert.

Pro Einheit wird eine bestimmte Anzahl an Beispielen bearbeitet. Die Übungsaufgaben werden immer mittwochs im Moodle-Kurs der Vorlesung online gestellt.
Auf einer Kreuzerlliste geben die Studierenden bis zu einer bestimmten Deadline an, welche der Beispiele gelöst wurden und laden die Ausarbeitungen der Lösungen dieser Beispiele in den jeweiligen Upload-Ordner im Moodle-Kurs hoch.

In der Einheit werden die Beispiele mittels Musterlösung erklärt und etwaige Fragen, Probleme, etc. besprochen. Diese Musterlösung wird danach auf Moodle hochgeladen.
Bei Plagiatsverdacht werden die Studierenden in der Einheit aufgefordert, die Lösung zu präsentieren. Die Studierenden müssen ihre Lösungen also bei Bedarf vorrechnen bzw. mittels Computer vorzeigen können.

Es reicht daher nicht aus, wenn nur Endergebnisse hochgeladen werden. Der Lösungsweg muss dokumentiert und nachvollziehbar sein, und die Wahl eines bestimmten Lösungswegs/Verfahrens begründet werden.

Mindestanforderungen und Beurteilungsmaßstab

Es besteht grundsätzlich Anwesenheitspflicht in den Einheiten (Präsenz sowie digital). Bei mehr als drei Fehleinheiten pro Semester wird die Lehrveranstaltung negativ beurteilt.

Die Beurteilung erfolgt auf Basis des Anteils an gekreuzten (und gültigen) Beispielen.
Die Beispiele werden NUR anerkannt, wenn die Kreuzerlliste ausgefüllt UND die gelösten Beispiele bis zur Deadline hochgeladen wurden. Wichtig: Ein Nachtragen der Kreuze sowie das Hochladen der Beispiele nach dieser Deadline ist nicht möglich (Ausnahme: erste Einheit mit Beispielen).
Falls für ein gekreuztes Beispiel keine Lösung hochgeladen wurde oder der Lösungsweg nicht nachvollziehbar ist, werden für dieses Beispiel keine Punkte vergeben. Zudem wird bei Plagiatsverdacht und gleichzeitig unzureichender bzw. keiner Präsentation in der Einheit, die Gesamtnote um einen Grad herabgesetzt.
Die Note ergibt sich durch folgenden Beurteilungsschlüssel (% der gültigen gekreuzten Beispiele an allen Beispielen des Semesters):
unter 60%: Nicht genügend (5)
ab 60%: Genügend (4)
ab 70%: Befriedigend (3)
ab 80%: Gut (2)
ab 90%: Sehr gut (1)
Zum Erreichen einer positiven Beurteilung sind daher mindestens 60% nötig.

Prüfungsstoff

Immanenter Prüfungscharakter (Anwesenheitspflicht!): Aufgaben, die ins Netz gestellt werden, sollen von Studierenden bearbeitet werden.

Literatur

Wird in der dazugehörigen Vorlesung bekanntgegeben.

Zuordnung im Vorlesungsverzeichnis

70413

Letzte Änderung: Mi 21.04.2021 11:26