Universität Wien

200075 SE Vertiefungsseminar: Geist und Gehirn (2019S)

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

4.00 ECTS (2.00 SWS), SPL 20 - Psychologie
Prüfungsimmanente Lehrveranstaltung

Vertiefungsseminare können nur für das Pflichtmodul B verwendet werden! Eine Verwendung für das Modul A4 Freie Fächer ist nicht möglich.

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 20 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

This course will be taught in English!
Please bring your laptop to the class, because there will be practical sessions. In case you do not have one, please share with your neighbors.
Please install R and RStudio before the first lecture (05.03.2019).
To install R: https://www.r-project.org/
To install RStudio: https://www.rstudio.com/

Dienstag 05.03. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock
Dienstag 19.03. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock
Dienstag 26.03. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock
Dienstag 02.04. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock
Dienstag 09.04. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock
Dienstag 30.04. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock
Dienstag 07.05. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock
Dienstag 14.05. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock
Dienstag 21.05. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock
Dienstag 04.06. 11:30 - 13:00 Hörsaal H Psychologie KG Liebiggasse 5
Dienstag 04.06. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock
Dienstag 18.06. 11:30 - 13:00 Hörsaal H Psychologie KG Liebiggasse 5
Dienstag 18.06. 13:15 - 14:45 Hörsaal F Psychologie, Liebiggasse 5 1. Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

[AIMS]
Computational modeling and mathematical modeling provide an insightful quantitative framework that allows researchers to inspect latent processes and to understand hidden mechanisms. Hence, computational modeling has gained increasing attention in many areas of cognitive science and neuroscience (hence, cognitive modeling). One illustration of this trend is the growing popularity of Bayesian approaches to cognitive modeling.

To this aim, this course teaches the theoretical and practical knowledge necessary to perform, evaluate and interpret Bayesian modeling analyses. Target group is students that plan or already started a master's or doctoral thesis using computational modeling.

[CONTENT]
This course is dedicated to introducing students to the basic knowledge of Bayesian statistics as well as basic techniques of Bayesian cognitive modeling. We will use R/RStudio and a newly developed statistical computing language - Stan (mc-stan.org) to perform Bayesian analyses, ranging from simple binomial model and linear regression model to more complex hierarchical models. Time will be allocated for in-class exercises. A brief introduction to R is also provided at the beginning of the course.

[METHODS]
Oral presentations by lecturer and students, in-class participation, homework, oral presentations of modeling projects, quizzes, a brief demonstration of running Stan on High Performance Computing (HPC) Clusters.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mindestanforderungen und Beurteilungsmaßstab

[Minimum requirements]
- Basic knowledge about statistics (e.g., t-test, regression)
- Basic R skills (but not a must)

[Assessment criteria]
- Able to provide a basic understanding of Bayesian statistics
- Able to understand the difference between Bayesian inference and frequentist inference
- Able to describe the concept of cognitive modeling and judge when to use it
- Able to write a simple cognitive model (e.g., Rescorla-Wagner model) in the Stan language

Prüfungsstoff

Will be discussed in course.

Literatur

[Journal articles]
- Kruschke, J. K., & Liddell, T. M. (2018). Bayesian data analysis for newcomers. Psychonomic bulletin & review, 25(1), 155-177.
- Wagenmakers, E. J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., ... & Matzke, D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic bulletin & review, 25(1), 35-57.
- Daw, N. D. (2011). Trial-by-trial data analysis using computational models. Decision making, affect, and learning: Attention and performance XXIII, 23, 3-38.
- Etz, A., Gronau, Q. F., Dablander, F., Edelsbrunner, P. A., & Baribault, B. (2018). How to become a Bayesian in eight easy steps: An annotated reading list. Psychonomic Bulletin & Review, 25(1), 219-234.
- Ahn, W. Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computational Psychiatry, 1, 24-57.

[Books]
- McElreath, R. (2016). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. CRC Press.
- Lambert, B. (2018). A Student’s Guide to Bayesian Statistics. Sage.

[Extended reading]
- Ahn, W. Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computational Psychiatry, 1, 24-57.
- Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., ... & Avesani, P. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 1-7.
- Hu, Y., He, L., Zhang, L., Wölk, T., Dreher, J. C., & Weber, B. (2018). Spreading inequality: neural computations underlying paying-it-forward reciprocity. Social cognitive and affective neuroscience, 13(6), 578-589.
- Zhang, L., & Gläscher, J. (2020). A brain network supporting social influences in human decision-making. Science advances, 6(34), eabb4159.
- Crawley, D., Zhang, L., Jones, E. J., Ahmad, J., Oakley, B., San José Cáceres, A., ... & EU-AIMS LEAP group. (2020). Modeling flexible behavior in childhood to adulthood shows age-dependent learning mechanisms and less optimal learning in autism in each age group. PLoS biology, 18(10), e3000908.
- Zhang, L., Redžepović, S., Rose, M., & Gläscher, J. (2018). Zen and the Art of Making a Bayesian Espresso. Neuron, 98(6), 1066-1068.
- Bayer, J., Rusch, T., Zhang, L., Gläscher, J., & Sommer, T. (2020). Dose-dependent effects of estrogen on prediction error related neural activity in the nucleus accumbens of healthy young women. Psychopharmacology, 237(3), 745-755.
- Kreis, I., Zhang, L., Moritz, S., & Pfuhl, G. (2020). Spared performance but increased uncertainty in schizophrenia: evidence from a probabilistic decision-making task.
- Schmalz, X., Manresa, J. B., & Zhang, L. (2020). What is a Bayes Factor?.
- Kreis, I., Zhang, L., Mittner, M., Syla, L., Lamm, C., & Pfuhl, G. (2020). Aberrant uncertainty processing is linked to psychotic-like experiences, autistic traits and reflected in pupil dilation.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Fr 15.01.2021 00:19