250123 VO Special Topics in Set Theory (2021W)
Labels
GEMISCHT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Englisch
Prüfungstermine
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Depending on the ongoing situation involving the pandemic the lectures will be some combination of in person, hybrid and on Zoom, with the precise make up subject to change as necessary.
The Zoom link, if and when we meet on Zoom, will be available on the Moodle course page. You may also write to corey.bacal.switzer@univie.ac.at to obtain it.
Dienstag
05.10.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
07.10.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
12.10.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
14.10.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
19.10.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
21.10.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
28.10.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
04.11.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
09.11.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
11.11.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
16.11.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
18.11.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
23.11.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
25.11.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
30.11.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
02.12.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
07.12.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
09.12.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
14.12.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
16.12.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
11.01.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
13.01.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
18.01.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
20.01.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Dienstag
25.01.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Donnerstag
27.01.
09:45 - 11:15
Seminarraum 10, Kolingasse 14-16, OG01
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
This is a more advanced course in set theory, picking up where Axiomatic Set Theory from last semester left off. The focus of the course is on the method of forcing and its applications. We will be particularly interested in iterated forcing and its applications to problems in topology, analysis and combinatorics. Most important among these will be the study of classical cardinal characteristics such as b, d, a and the cardinals associated with the ideals of meager and measure zero sets. We will also discuss Martin's axiom and the independence of Souslin's hypothesis.It is strongly recommended that students of this course also attend Professor Fischer's Research Seminar in Set Theory.
Art der Leistungskontrolle und erlaubte Hilfsmittel
A final oral exam or regular class participation in the form of assignments.
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
The material covered in the lectures.
Literatur
1) Lecture notes of the course2) Uri Abraham, "Proper Forcing", in Handbook of Set Theory, Foreman, Kanamori, and Magidor (eds.), Springer, 2010, pp.333-394.3) T. Bartoszynski and H. Judah, "Set Theory: On the Structure of the Real Line". A.K. Peters, Wellsley, MA, 1995. x+546pp.4) L. Halbeisen, "Combinatorial Set Theory with a Gentle Introduction to Forcing", Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2017. xvi+594pp.5) T. Jech, "Set Theory", The Third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv + 769pp.6) K. Kunen, "Set Theory", Studies in Logic, Mathematical Logic and Foundations Vol. 34. Revised Edition. College Publications, London, 2013. viii + 402pp.7) S. Shelah, "Proper and Improper Forcing", Second Edition. Perspectives in Logic, Cambridge University Press, Cambridge, 2016. xlviii+1020pp.
Zuordnung im Vorlesungsverzeichnis
MLOV
Letzte Änderung: Mi 15.06.2022 17:09