260038 VO Physik der kondensierten Materie (2020W)
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Deutsch, Englisch
Prüfungstermine
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Donnerstag
08.10.
09:00 - 10:30
Digital
Montag
12.10.
14:15 - 15:45
Digital
Donnerstag
15.10.
09:00 - 10:30
Digital
Montag
19.10.
14:15 - 15:45
Digital
Donnerstag
22.10.
09:00 - 10:30
Digital
Donnerstag
29.10.
09:00 - 10:30
Digital
Donnerstag
05.11.
09:00 - 10:30
Digital
Montag
09.11.
14:15 - 15:45
Digital
Donnerstag
12.11.
09:00 - 10:30
Digital
Montag
16.11.
14:15 - 15:45
Digital
Donnerstag
19.11.
09:00 - 10:30
Digital
Montag
23.11.
14:15 - 15:45
Digital
Donnerstag
26.11.
09:00 - 10:30
Digital
Montag
30.11.
14:15 - 15:45
Digital
Donnerstag
03.12.
09:00 - 10:30
Digital
Montag
07.12.
14:15 - 15:45
Digital
Donnerstag
10.12.
09:00 - 10:30
Digital
Montag
14.12.
14:15 - 15:45
Digital
Donnerstag
17.12.
09:00 - 10:30
Digital
Donnerstag
07.01.
09:00 - 10:30
Digital
Montag
11.01.
14:15 - 15:45
Digital
Donnerstag
14.01.
09:00 - 10:30
Digital
Montag
18.01.
14:15 - 15:45
Digital
Donnerstag
21.01.
09:00 - 10:30
Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The course will be assessed via a written online module examination in open-book format. The questions are made available for download in the form of an exam sheet in Moodle. At the end of the 2-hour examination period, the questionnaire with the answers must be photographed or scanned and uploaded as pdf file to Moodle at the deisgnated "task".
Mindestanforderungen und Beurteilungsmaßstab
50% of the total points at the final exam.
50 - 62.49% grade 4
62.5 - 74.99% grade 3
75 - 87.49% grade 2
87.5 - 100% grade 1
50 - 62.49% grade 4
62.5 - 74.99% grade 3
75 - 87.49% grade 2
87.5 - 100% grade 1
Prüfungsstoff
The course is to be regarded as one, single and inseparable entity together with the associated exercise class 260121 PUE, which is listed separately for technical reasons only. What we show in class will be worked upon and truly learned by individual and independent work on the homework sets of 260121 PUE, which will be distributed weekly.
For students of the old Master’s Curriculum: The exam contains similar questions as the module exam and a smaller number of calculation examples.
For students of the old Master’s Curriculum: The exam contains similar questions as the module exam and a smaller number of calculation examples.
Literatur
Materials Science & Engineering, An Introduction: William Callister jr., David G. Rethwisch.
Introduction to Crystallogrpahy: C. Hammond, Oxford University Press 1990.
Phase Transformations in Metals and Alloys, David A. Porter et al. CRC Press, 2009.
Theory of Dislocations: J.P. Hirth and J. Lothe, Wiley & Sons 1982.
Introduction to Dislocations: D. Hull and D.J. Bacon
Introduction to Solid State Physics: Charles Kittel (or Einführung in die Festkörperphysik, Charles Kittel).
Festkörperphysik: Siegfried Hunklinger
Festkörperphysik: Rudolf Gross, Achim Marx
Fundamentals and applications of magnetic materials: K.M. Krishnan
Introduction to Crystallogrpahy: C. Hammond, Oxford University Press 1990.
Phase Transformations in Metals and Alloys, David A. Porter et al. CRC Press, 2009.
Theory of Dislocations: J.P. Hirth and J. Lothe, Wiley & Sons 1982.
Introduction to Dislocations: D. Hull and D.J. Bacon
Introduction to Solid State Physics: Charles Kittel (or Einführung in die Festkörperphysik, Charles Kittel).
Festkörperphysik: Siegfried Hunklinger
Festkörperphysik: Rudolf Gross, Achim Marx
Fundamentals and applications of magnetic materials: K.M. Krishnan
Zuordnung im Vorlesungsverzeichnis
M-CORE 10, M-VAF A 1, MaG 9, MaG 10, MaG 13, MaG 14, MaG 23, MaG 24, UF MA PHYS 01a, UF MA PHYS 01b
Letzte Änderung: Fr 29.01.2021 07:48
The following topics are contained in the course: Symmetry and crystallography in 2 and 3 dimensions; crystal structures, thermodynamics and condensed matter phases; structure analysis of crystalline, quasicrystalline and amorphous matter; concept of the reciprocal lattice; point, line and surface imperfections; mechanical properties, free electron Fermi gas, transport properties, spin-dependent electric transport, energy bands, introduction to magnetism, plasmons and polaritons.