Universität Wien

280087 VU MA-ERD-W-1.1 Paleozoic Biodiversity, Stratigraphy and Events (PI) (2021S)

Prüfungsimmanente Lehrveranstaltung
VOR-ORT

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 15 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Im März und April voraussichtlich digitale Lehre!
[Digitale Lehre: Aufgrund von COVID verlängert bis Mitte Juni!]

  • Montag 01.03. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 08.03. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 15.03. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 22.03. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 12.04. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 19.04. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 26.04. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 03.05. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 10.05. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 17.05. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 31.05. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 07.06. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 14.06. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 21.06. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Montag 28.06. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The Paleozoic Era (541 - 252 Ma) represents the timespan, when early marine communities produced first skeleton-bearing metazoans, when life invaded land and plants developed rooting systems that produced real soil. A short overview of Paleozoic paleogeography, paleoclimatic development and the evolution of life from Cambrian to Permian will be presented.

There existed several groups of deep-time index fossils for different marine and continental habitats. Among these, trilobites, graptolites, conodonts and radiolarians represent the most important groups. Core index fossils, their stratigraphic range and preferred habitat are introduced.

Highlighted are major Paleozoic global crisis and its effects on marine and terrestrial life and diversity. Trigger and cause of severe paleoenvironmental changes are explored based on marine geochemistry, sedimentological evidence and sea-surface-temperature estimates from conodont apatite and brachiopods across selected extinction events, e.g., the Hirnantian glaciation or the Middle Devonian greenhouse episodes.

Art der Leistungskontrolle und erlaubte Hilfsmittel

PI - Leistungsfeststellung erfolgt während online LV und während der Übungen vor Ort.

Mindestanforderungen und Beurteilungsmaßstab

no specific qualification required.

Prüfungsstoff

Paleozoic Stratigraphy; biostratigraphic relevant fossil groups (e.g., conodonts, trilobites, foraminifers); extinction events.

Literatur

STRATIGRAPHY
Gradstein, F.M., Ogg, J.G., Schmitz, M.D., & Ogg, G.M. (eds) (2012). The geologic time scale 2012, Elsevier, 1144 pp.

BIODIVERSITY
Copper, P. (2002). Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. 181–238. In: Kiessling, W., Flügel, E. & Golonka, J. (eds) Phanerozoic Reef Patterns. Society of Economic Paleontologists and Mineralogists Special Publication, 72.

Joachimski, M.M., Lai, X.-L., Shen, S.-Z., Jiang, H.-S., Luo, G.-M., Chen, B., Chen, J. & Sun, Y.-D. (2012). Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40, 195–198.

McGhee, G.R., Clapham, M.E., Sheehan, P.M., Bottjer, D.J. & Droser, M.L. (2013). A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 260–270.

Sepkoski Jr., J.J. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7, 36–53.

PALEOMAPS
Golonka, J. (2002). Plate-tectonic maps of the Phanerozoic. 21–75. In: Kiessling, W., Flügel, E. & Golonka, J. (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists Special Publication, 72.

Kiessling, W., Flügel, E. & Golonka, J. (2003). Patterns of Phanerozoic carbonate platform sedimentation. Lethaia, 36 (3), 195–225.

Scotese, C.R. & McKerrow, W.S. (1990). Revised world maps and introduction. 1–21. In: McKerrow, W.S. & Scotese, C.R. (eds) Palaeozoic Palaeogeography and Biogeography. Geological Society, London, Memoir, 12.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Fr 12.05.2023 00:22