400012 SE Introduction to linear regression models (2025W)
Methodenseminar
Prüfungsimmanente Lehrveranstaltung
Labels
VOR-ORT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 01.09.2025 09:00 bis Di 23.09.2025 23:59
- Abmeldung bis Mi 15.10.2025 09:00
Details
max. 15 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 04.11. 13:00 - 19:00 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- N Dienstag 11.11. 13:00 - 19:00 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Dienstag 18.11. 13:15 - 19:00 Seminarraum 19, Kolingasse 14-16, OG02
- Dienstag 25.11. 13:00 - 19:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Dienstag 02.12. 13:00 - 19:00 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Assessment and permitted materials
1) Problem-set paper on main concepts and interpretation of results, assigned after the last class OR 10-15 page paper using regression models on a substantive topic related to the PhD thesis (50%).
2) Homework and problem sets after each class, to be submitted at four set dates (40%)
3) Continuous assessment of class participation (10%)
1) Problem-set paper on main concepts and interpretation of results, assigned after the last class OR 10-15 page paper using regression models on a substantive topic related to the PhD thesis (50%).
2) Homework and problem sets after each class, to be submitted at four set dates (40%)
3) Continuous assessment of class participation (10%)
Mindestanforderungen und Beurteilungsmaßstab
Students need to achieve a pass grade (4) on each of these three assessment criteria. Attendance is mandatory.
Prüfungsstoff
tba
Literatur
Gelman, Hill and Vehtari (2020) Regression and Other Stories, Cambridge UP: Cambridge.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 22.09.2025 09:47
We will begin by reviewing basic statistical concepts, such as comparing means and testing hypotheses, before moving on to the analysis of the association between two continuous variables. We will then discuss simple linear regression and the assumptions underlying OLS regression. The course will proceed to cover multiple regression models, with a focus on the practical interpretation of results. Different types of explanatory variables, including binary/nominal variables and interaction effects, will be introduced. Finally, an overview of possible problems and their remedies is provided, and we will consider how to approach model-building in OLS regression.
Throughout the course, real-world examples are used to illustrate concepts and ensure practical understanding.