040100 VO Mathematics 2 (2021S)
Labels
REMOTE
Um Zugriff zu den Unterlagen in Moodle zu erhalten, melden Sie sich bitte via U:Space für die VO an.Es findet ein freiwilliges Tutorium (Nico Richter) statt: MO wtl von 01.03.2021 bis 21.06.2021 18.30-20.00 Ort: digital online (Collaborate)
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
-
Thursday
01.07.2021
09:45 - 13:00
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 12 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock -
Wednesday
22.09.2021
15:00 - 17:45
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Monday
15.11.2021
09:45 - 12:30
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock -
Wednesday
26.01.2022
16:45 - 19:30
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Lecturers
Classes (iCal) - next class is marked with N
- Monday 01.03. 15:00 - 18:15 Digital
- Monday 08.03. 15:00 - 18:15 Digital
- Monday 15.03. 15:00 - 18:15 Digital
- Monday 22.03. 15:00 - 18:15 Digital
- Monday 12.04. 15:00 - 18:15 Digital
- Monday 19.04. 15:00 - 18:15 Digital
- Monday 26.04. 15:00 - 18:15 Digital
- Monday 03.05. 15:00 - 18:15 Digital
- Monday 10.05. 15:00 - 18:15 Digital
- Monday 17.05. 15:00 - 18:15 Digital
- Monday 31.05. 15:00 - 18:15 Digital
- Monday 07.06. 15:00 - 18:15 Digital
- Monday 14.06. 15:00 - 18:15 Digital
- Monday 21.06. 15:00 - 18:15 Digital
- Monday 28.06. 15:00 - 18:15 Digital
Information
Aims, contents and method of the course
Assessment and permitted materials
written exam about the topics discussed in the lecturePermitted materials for the exam:
Handwritten notes on an A4 sheet;
A simple, non-programmable calculator, without matrix operations, which does not plot graphs, solve equations, and does not compute derivatives or integrals is allowed.Please note that mobile phones, smart watches etc. must be out of reach during the exam.For more information please visit
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
Handwritten notes on an A4 sheet;
A simple, non-programmable calculator, without matrix operations, which does not plot graphs, solve equations, and does not compute derivatives or integrals is allowed.Please note that mobile phones, smart watches etc. must be out of reach during the exam.For more information please visit
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
Minimum requirements and assessment criteria
see German webpage
Examination topics
see German webpage
Reading list
A. Gaunersdorfer, Mathematik 2 - Optimierung in den Wirtschaftswissenschaften, Skriptum, Februar 2021.
(Korrekturen zu älteren Auflagen des Skriptums werden in Moodle zur Verfügung gestellt.)Weitere Literaturhinweise finden Sie im Skriptum, in Moodle und unter
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
(Korrekturen zu älteren Auflagen des Skriptums werden in Moodle zur Verfügung gestellt.)Weitere Literaturhinweise finden Sie im Skriptum, in Moodle und unter
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
Association in the course directory
Last modified: Fr 12.05.2023 00:12
as well as their application in business and economics.Contents:
1. Introduction: optimization problems in business and economics
2. Differential calculus for functions of several variables
(real valued functions of several variables, some basics terms of topoloy, partial derivatives, derivative, tangent plane, gradient, vector functions, Jacobian, chain rule, directional derivatives, total differential, geometric interpretation of the gradient, second derivatives, Hessian, second directional derivative)
3. Convexity
(convex sets, convex and concave functions in several variables)
4. Optimization of scalar valued functions
(stationary points, second order conditions, comparative statics, envelope theorem)
Inverse and implicit functions
5. Optimization with equality constraints: Lagrange's method
(first and second order conditions, interpretation of the Lagrange multipliers, conditions for global optima, quasiconcavity and quasiconvexity, economic applications)
6. Nonlinear programming
(convex programs, Kuhn-Tucker conditions, constraint qualifications, saddle point condition)
7. Linear programming
(model formulation, assumptions underlying a linear planning model, graphic solution of two-variable programs, basic solutions, characterization of the sets of feasible and optimal solutions, simplex method, formal structure of the simplex tabelaus, alternative optimal solutions, duality, complementary slackness, economic interpretation of the dual programme, interpretation of a computer solution)