052101 VU Numerical Algorithms (2019W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Sa 07.09.2019 09:00 to Mo 23.09.2019 09:00
- Deregistration possible until Mo 14.10.2019 23:59
Details
max. 50 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 07.10. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 14.10. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 21.10. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 28.10. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 04.11. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 11.11. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 18.11. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 25.11. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 02.12. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 09.12. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 16.12. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 13.01. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 20.01. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 27.01. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 27.01. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Information
Aims, contents and method of the course
Get acquainted with fundamental concepts of numerical algorithms (approximations in numerical computation, conditioning, numerical stability) and with techniques for the analysis of numerical algorithms (perturbation theory). Study selected numerical algorithms (mostly matrix algorithms) in detail. Understand the interdependencies between problem data, numerical algorithm, implementation of the algorithm, hardware, performance and accuracy.
Assessment and permitted materials
Three sets of homework problems (with theoretical and programming components - implementation, experimentation, analysis); test in the middle and in the end of the semester.
Minimum requirements and assessment criteria
The maximum possible score is 100 points (12 per set of homework problems, 32 per test). At least 50 points are required for passing the course.
Examination topics
Material presented in class and contents of homework problems.
Reading list
Slides; M. T. Heath: “Scientific Computing – an Introductory Survey”
Association in the course directory
Last modified: Mo 07.09.2020 15:20