Warning! The directory is not yet complete and will be amended until the beginning of the term.
052101 VU Numerical Algorithms (2019W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Sa 07.09.2019 09:00 to Mo 23.09.2019 09:00
- Deregistration possible until Mo 14.10.2019 23:59
Details
max. 50 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
Monday
07.10.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
14.10.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
21.10.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
28.10.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
04.11.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
11.11.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
18.11.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
25.11.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
02.12.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
09.12.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
16.12.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
13.01.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
20.01.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
27.01.
08:00 - 09:30
Hörsaal 2, Währinger Straße 29 2.OG
Monday
27.01.
15:00 - 16:30
Hörsaal 2, Währinger Straße 29 2.OG
Information
Aims, contents and method of the course
Get acquainted with fundamental concepts of numerical algorithms (approximations in numerical computation, conditioning, numerical stability) and with techniques for the analysis of numerical algorithms (perturbation theory). Study selected numerical algorithms (mostly matrix algorithms) in detail. Understand the interdependencies between problem data, numerical algorithm, implementation of the algorithm, hardware, performance and accuracy.
Assessment and permitted materials
Three sets of homework problems (with theoretical and programming components - implementation, experimentation, analysis); test in the middle and in the end of the semester.
Minimum requirements and assessment criteria
The maximum possible score is 100 points (12 per set of homework problems, 32 per test). At least 50 points are required for passing the course.
Examination topics
Material presented in class and contents of homework problems.
Reading list
Slides; M. T. Heath: “Scientific Computing – an Introductory Survey”
Association in the course directory
Last modified: Mo 07.09.2020 15:20