Universität Wien FIND

052316 VU Deep Learning for Natural Language Processing (2022W)

Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

Thursday 06.10. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 06.10. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 13.10. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 13.10. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 20.10. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 20.10. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 27.10. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 27.10. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 03.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 03.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 10.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 10.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 17.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 17.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 24.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 24.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 01.12. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 01.12. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 15.12. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 15.12. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 12.01. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 12.01. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 19.01. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 19.01. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 26.01. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
Thursday 26.01. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02

Information

Aims, contents and method of the course

This course will cover topics related to the application of DL (Deep Learning) techniques for solving NLP (Natural Language Processing) tasks. The first part will cover basic concepts of machine learning such as linear and logistic regression, as well as feed-forward neural networks and back propagation. The second part will introduce more advanced neural network networks such as CNNs and RNNs, as well as Python frameworks such as Numpy and Pytorch. The third part will continue with pretrained language models such as BERT, its variants, GPT and their applications in solving natural language processing tasks. Solid background of Python is highly relevant and necessary.

Assessment and permitted materials

- Regular assignments throughout the semester in Moodle 25%
- Programming exercises 25%
- Examination at the end 50%

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

Last modified: Mo 17.10.2022 12:09