052321 VU Recent Developments in Knowledge Discovery in Databases (2025S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 10.02.2025 09:00 to Fr 21.02.2025 09:00
- Deregistration possible until Fr 14.03.2025 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 04.03. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 06.03. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 11.03. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 13.03. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 18.03. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 20.03. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 25.03. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 27.03. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 01.04. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 03.04. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 08.04. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 10.04. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 29.04. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Tuesday 06.05. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 08.05. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 13.05. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- N Thursday 15.05. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 20.05. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 22.05. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 27.05. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Tuesday 03.06. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 05.06. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 10.06. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 12.06. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Tuesday 17.06. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Tuesday 24.06. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Thursday 26.06. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
Information
Aims, contents and method of the course
Assessment and permitted materials
100 points in total.
Causality: a small test at the end of the Causality course; Exercise sheet; Paper presentation; Causal challenge (= creating a small database).Clustering: either theory or practical project (25P); Test in the end (25P).
Causality: a small test at the end of the Causality course; Exercise sheet; Paper presentation; Causal challenge (= creating a small database).Clustering: either theory or practical project (25P); Test in the end (25P).
Minimum requirements and assessment criteria
This course is for master students only.We recommend to have visited the basic bachelor courses as well as
- Foundations of Data Analysis (required)
- Data MiningComponents:
50% from the Causality part
25% Project for clustering
25% Test about clusteringGrading:
>87,00 %: 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50%: 5
- Foundations of Data Analysis (required)
- Data MiningComponents:
50% from the Causality part
25% Project for clustering
25% Test about clusteringGrading:
>87,00 %: 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50%: 5
Examination topics
Reading list
For the Causal Inference part, this literature provides the background to better understand the taught models and methods:Sayed, Ali H. Inference and Learning from Data: Learning. Vol. 1- 3. Cambridge University Press, 2022.Volume I: Chapters Matrix Theory, Random Variable, Exponential Distributions, pp. 1-195; Random Processes, pp. 240-259; Volume II: Chapters MSE Inference, pp. 1053-1090, Linear Regression, pp. 1121-1153; Maximum Likelihood, pp. 1211-1273, Inference in Graphs: 1682-1737; Volume III: Chapters Regularization, pp. 2221-2257, Logistic Regression, pp. 2457-2496.Access to the book via Library of University of Vienna (website) or Cambridge University Press (website).
Association in the course directory
Last modified: Tu 25.03.2025 14:25
The goal of this course is by active learning to understand und be creative in this awesome field of knowledge discovery.In the second part, we focus on clustering. We build upon existing knowledge from FDA and Data Mining and regard recent developments in the field and approaches to open challenges like fairness, noisy data sets, or data with uncertainty.
As a project, students can choose between more theoretical or practical work:
For the theory project, they focus on a recent paper, create a tutorial for it that makes it easy to understand for non-computer scientists, and present it to the group.
If you prefer a more practical project, we give the option to take part in a challenge like the KDD CUP (which is going to be published on March 1st, as a reference, you can regard challenges from the last year: https://www.biendata.xyz/kdd2024/)
The semester ends with a small test about the topics from the second half of the semester.