Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching can be found at https://studieren.univie.ac.at/en/info.

052413 VU Logical Foundations of Knowledge Engineering (2018W)

Continuous assessment of course work

Summary

1 Karagiannis , Moodle
2 Karagiannis , Moodle

Registration/Deregistration

Registration information is available for each group.

Groups

Group 1

max. 25 participants
Language: English
LMS: Moodle

Lecturers

Classes (iCal) - next class is marked with N

Wednesday 03.10. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 04.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Wednesday 10.10. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 11.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Wednesday 17.10. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 18.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Wednesday 24.10. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 25.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Wednesday 31.10. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Wednesday 07.11. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 08.11. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Wednesday 14.11. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 15.11. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Monday 19.11. 16:45 - 18:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock

Group 2

max. 25 participants
Language: English
LMS: Moodle

Lecturers

Classes (iCal) - next class is marked with N

Wednesday 03.10. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 04.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Wednesday 10.10. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 11.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Wednesday 17.10. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 18.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Wednesday 24.10. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 25.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Wednesday 31.10. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Wednesday 07.11. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 08.11. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Wednesday 14.11. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Thursday 15.11. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
Monday 19.11. 16:45 - 18:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

In this lecture, the goal is to gain expertise in basics knowledge engineering. Therefore, students explore the relevant theory and reinforce their knowledge in exercises where approaches for knowledge representation and knowledge processing are employed. Topics like propositional logic, first-order logic and rule based systems are covered in this lecture.

Assessment and permitted materials

Twice during the semester a written test has to be passed. The test will contain theory questions and applied problems. During the test, no unauthorized materials are allowed and all electronic devices have to be turned off.
During the semester, homework assignments have to be submitted. Solutions have to be independent for each student.
In detail, the grade is constituted by:
* Written tests – 40 % + 40 %
* Homework assignments (Exercises) – 20%
Missing class more than three times results in a negative grade.

Minimum requirements and assessment criteria

The aim of the course is to learn and understand the logical foundations for knowledge engineering and how they can be applied.
To receive a positive grade, 50 out of 100 percent are required. Grades are as follows:
* sehr gut (1) >= 87,00%
* gut (2) >= 75,00%
* befriedigend (3) >= 62,00%
* genügend (4) >= 50,00 %
* nicht genügend (5) < 50,00 %

Examination topics

Information, Knowledge & Knowledge Engineering
Knowledge Representation
Propositional & First-Order Logic: Introduction
Propositional Logic: Reasoning and Proof
First-Order Logic: Reasoning and Proof
Rule Based Systems
Fuzzy Logic

Reading list

Script with lecture content

Moodle course

Dimitris Karagiannis, Rainer Telesko (2001), Wissensmanagement: Konzepte der künstlichen Intelligenz und des Softcomputing

Stuart J. Russell, Peter Norvig (2009), Artificial Intelligence - A Modern Approach

Association in the course directory

Module: KE WI2

Last modified: Mo 07.09.2020 15:30