053612 VU Optimisation Methods for Data Science (2023W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from We 13.09.2023 09:00 to We 20.09.2023 09:00
- Deregistration possible until Sa 14.10.2023 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 02.10. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 05.10. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 09.10. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 12.10. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 16.10. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 19.10. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 23.10. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 30.10. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 06.11. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 09.11. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 13.11. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 16.11. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 20.11. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 23.11. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 27.11. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 30.11. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 04.12. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 07.12. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 11.12. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 14.12. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 08.01. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 11.01. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 15.01. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 18.01. 11:30 - 13:00 Seminarraum 7, Währinger Straße 29 1.OG
- Monday 22.01. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Thursday 25.01. 11:30 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Monday 29.01. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
Information
Aims, contents and method of the course
Assessment and permitted materials
(1) a written exam at the end of the semester (in person)
(2) 2-3 long homeworks during semester
(3) bonus points for active participation during classesThe date for the exam is January 25, 2024.
(2) 2-3 long homeworks during semester
(3) bonus points for active participation during classesThe date for the exam is January 25, 2024.
Minimum requirements and assessment criteria
Exam: 50%
Exercises: 50%Precentage/Grades:0-53: nicht genuegend/fail (5)
54-65: genuegend/pass (4)
66-77: befriedigend/satisfactory (3)
78-89: gut/good (2)
90-100: sehr gut/excellent (1)
Exercises: 50%Precentage/Grades:0-53: nicht genuegend/fail (5)
54-65: genuegend/pass (4)
66-77: befriedigend/satisfactory (3)
78-89: gut/good (2)
90-100: sehr gut/excellent (1)
Examination topics
all material covered during lectures
Reading list
1. A. Beck "First-Order Methods in Optimization".
2. Optimization for Machine Learning lecture notes by Martin Jaggi EPFL and Bernd Gärtner, ETH
https://raw.githubusercontent.com/epfml/OptML_course/master/lecture_notes/lecture-notes.pdf
3. Stephen Boyd and Lieven Vandenberghe. "Convex Optimization", https://web.stanford.edu/~boyd/cvxbook/.
2. Optimization for Machine Learning lecture notes by Martin Jaggi EPFL and Bernd Gärtner, ETH
https://raw.githubusercontent.com/epfml/OptML_course/master/lecture_notes/lecture-notes.pdf
3. Stephen Boyd and Lieven Vandenberghe. "Convex Optimization", https://web.stanford.edu/~boyd/cvxbook/.
Association in the course directory
Modul: OMD
Last modified: Th 18.01.2024 16:25
- Fundamentals of convex analysis
- First-order methods: gradient descent, subgradient method, acceleration, adaptivity, etc.
- Stochastic first-order methods: stochastic gradient descent, variance reduction.
- Higher-order methods: Newton's method, quasi-Newton method.