Universität Wien

250043 VO Introduction to Mathematical Logic (2025W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 02.10. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 07.10. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 09.10. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 14.10. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 16.10. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 21.10. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 23.10. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 28.10. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 30.10. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 04.11. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 06.11. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 11.11. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 13.11. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 18.11. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 20.11. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 25.11. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 27.11. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 04.12. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 09.12. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 11.12. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 16.12. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 18.12. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 08.01. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.01. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 15.01. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 20.01. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.01. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 27.01. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 29.01. 08:00 - 09:30 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This class is an introduction to mathematical logic. The primary goal is to take a deep dive into first-order logic by unraveling the connections between its syntax and its semantics. Some highlights will be: Gödel's Completeness Theorem and the Compactness Theorem for first-order logic; the Back and Forth method and Ehrenfeucht-Fraïssé games; Elimination of Quantifiers; Tarski's Theorem on the non-definability of truth; and Gödel's Incompleteness Theorems. In the process we will cover some basics of model theory, recursion theory and set theory and discuss applications to algebra, combinatorics, and other areas of mathematics.

Assessment and permitted materials

There will be a final exam during the last lecture. A couple more exam dates will be announced later, to take place during the summer semester of 2024.

Minimum requirements and assessment criteria

Pass the final exam.

Examination topics

For the final exam you will need to know the material covered in the lecture and the discussion sessions, and be able to apply it. I will regularly assign problems that will help you deepen your understanding of the material. You should expect similar problems to appear on the final.

Reading list

I will be posting handwritten notes on a weekly or bi-weekly basis.
The notes will be based on a combination of the following sources:
(1) Lou van den Dries' "Mathematical Logic Lecture Notes" which can be found, for example, here: https://www.mat.univie.ac.at/~panagiotopoulos/2019.pdf

(2) "A first journey through logic" by M. Hils and F. Loeser
https://webusers.imj-prg.fr/~francois.loeser/stml089.pdf

(3) "An Invitation to Mathematical Logic" by D. Marker (beware of the many typos)

Association in the course directory

MLOL; ML1; MEL

Last modified: We 01.10.2025 14:47