Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice. Inform yourself about the current status on u:find and check your e-mails regularly.

Please read the information on https://studieren.univie.ac.at/en/info.

Warning! The directory is not yet complete and will be amended until the beginning of the term.

250044 VO Algebraic topology 2 (2009W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Monday 05.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 06.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 07.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 08.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 12.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 13.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 14.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 15.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 19.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 20.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 21.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 22.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 27.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 28.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 29.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 03.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 04.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 05.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 09.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 10.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 11.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 12.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 16.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 17.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 18.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 19.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 23.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 24.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 25.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 26.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 30.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 01.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 02.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 03.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 07.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 09.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 10.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 14.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 15.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 16.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 17.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 07.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 11.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 12.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 13.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 14.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 18.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 19.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 20.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 21.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Monday 25.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Tuesday 26.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Wednesday 27.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Thursday 28.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II

Information

Aims, contents and method of the course

This will be a continuation of the course "Algebraic Topology" which has been offered last semester. Among other things, it will cover the following subjects. Homology with coefficients, Künneth theorem, the cohomology ring, Poincaré duality, CW complexes and cellular (co)homology, simplicial complexes and simplicial (co)homology, higher homotopy groups and Hurewitz homomorphisms. We will also discuss numerous applications such as the Lefschetz fixed point theorem, the Borsuk Ulam theorem and a result about the dimension of division algebras. If time permits, we will discuss characteristic classes.

For further information see: http://www.mat.univie.ac.at/~stefan/ATII09.html

Assessment and permitted materials

Oral exam.

Minimum requirements and assessment criteria

To become acquainted with basic methods in Algebraic Topology and their application.

Examination topics

Algebraic Topology studies topological spaces and continuous maps by associating algebraic objects (eg. groups or rings) to spaces, and homomorphisms to continuous maps.

Reading list

[-] A. Hatcher, Algebraic Topology. Cambridge University Press.
Frei erhältlich unter: http://www.math.cornell.edu/~hatcher/AT/ATpage.html

[-] A. Dold, Lectures on Algebraic Topology. Classics in Mathematics, Springer-Verlag, Berlin, 1995.

[-] R. Stöcker und H. Zieschang, Algebraische Topologie. Eine Einführung. B.G. Teubner, Stuttgart.

Association in the course directory

MGEV

Last modified: Mo 07.09.2020 15:40