250063 PS Problem solving (2012W)
Continuous assessment of course work
Labels
Proseminar bereits voll!
Folien: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Folien.pdf
Problem-der-Woche-1-2: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Problem-der-Woche-1-2.pdf
Problem-der-Woche-3-4: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Problem-der-Woche-3-4.pdf
Problem-der-Woche-5-6: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Problem-der-Woche-5-6.pdf
Problem-der-Woche-7-8: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Problem-der-Woche-7-8.pdf
Problem-der-Woche-9-10: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Problem-der-Woche-9-10.pdf
Folien: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Folien.pdf
Problem-der-Woche-1-2: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Problem-der-Woche-1-2.pdf
Problem-der-Woche-3-4: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Problem-der-Woche-3-4.pdf
Problem-der-Woche-5-6: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Problem-der-Woche-5-6.pdf
Problem-der-Woche-7-8: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Problem-der-Woche-7-8.pdf
Problem-der-Woche-9-10: http://homepage.univie.ac.at/hans.humenberger/Problemloesen/Problem-der-Woche-9-10.pdf
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
Thursday
04.10.
12:00 - 14:00
Seminarraum
Thursday
11.10.
12:00 - 14:00
Seminarraum
Thursday
18.10.
12:00 - 14:00
Seminarraum
Thursday
25.10.
12:00 - 14:00
Seminarraum
Thursday
08.11.
12:00 - 14:00
Seminarraum
Thursday
15.11.
12:00 - 14:00
Seminarraum
Thursday
22.11.
12:00 - 14:00
Seminarraum
Thursday
29.11.
12:00 - 14:00
Seminarraum
Thursday
06.12.
12:00 - 14:00
Seminarraum
Thursday
13.12.
12:00 - 14:00
Seminarraum
Thursday
10.01.
12:00 - 14:00
Seminarraum
Thursday
17.01.
12:00 - 14:00
Seminarraum
Thursday
24.01.
12:00 - 14:00
Seminarraum
Thursday
31.01.
12:00 - 14:00
Seminarraum
Information
Aims, contents and method of the course
Autonomous problem solving processes, heuristic strategies
Assessment and permitted materials
Active participation in the course, elaboration and presentation of solutions
Minimum requirements and assessment criteria
Students should get experiences in solving problems and reflecting on problem solving processes.
Examination topics
alks and presentations by students, problem solving activities, discussions
Reading list
Bruder, R. , Collet, Ch. (2011): Problemlösen lernen im Mathematikunterricht. Cornelsen, Berlin.
Association in the course directory
LAD
Last modified: Mo 07.09.2020 15:40