250067 VO Locally convex spaces (2017S)
Labels
Details
Language: English
Examination dates
- Monday 24.07.2017
- Friday 27.10.2017
- Monday 20.08.2018
- Thursday 08.11.2018
- Friday 01.03.2019
- Thursday 08.08.2019
- Monday 10.05.2021
Lecturers
Classes (iCal) - next class is marked with N
We will fix a convenient day and time for the lecture in the first meeting on March 2.
- Thursday 02.03. 09:00 - 09:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 03.03. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.03. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.03. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.03. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 31.03. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 07.04. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 28.04. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 05.05. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 12.05. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 19.05. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 26.05. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 02.06. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 09.06. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 16.06. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 23.06. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 30.06. 13:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral examination.
Minimum requirements and assessment criteria
Ability to reproduce notions and results presented during the lecture, and to prove these results.
Examination topics
Lecture notes will be made available during the semester.
Reading list
- A. Grothendieck. Topological vector spaces.
- J. Horvath. Topological vector spaces and distributions.
- H. Jarchow. Locally Convex Spaces.
- L. Narici and E. Beckenstein. Topological Vector Spaces.
- A. P. Robertson and W. Robertson. Topological vector spaces.
- H. H. Schaefer. Topological vector spaces.
- J. Horvath. Topological vector spaces and distributions.
- H. Jarchow. Locally Convex Spaces.
- L. Narici and E. Beckenstein. Topological Vector Spaces.
- A. P. Robertson and W. Robertson. Topological vector spaces.
- H. H. Schaefer. Topological vector spaces.
Association in the course directory
MANV
Last modified: Tu 11.05.2021 00:22
- Topological vector spaces
- Locally convex spaces (LCS)
- Duality theory for LCS
- Important classes of LCS
- The theorems of Hahn-Banach, Banach-Steinhaus and the closed graph theorem.Depending on available time and interests of the audience, this may be supplemented by additional material as for example
- classes of linear operators on LCS
- topological tensor productsExcept for general topology and some linear algebra, no prerequisites are necessary, although we will draw connections to functional analysis where possible.