Warning! The directory is not yet complete and will be amended until the beginning of the term.
250100 VO Axiomatic set theory 1 (2018S)
Labels
Details
Language: English
Examination dates
Thursday
28.06.2018
Friday
13.07.2018
Friday
19.10.2018
Friday
16.11.2018
Friday
18.01.2019
Thursday
31.01.2019
Thursday
23.05.2019
Lecturers
Classes (iCal) - next class is marked with N
Thursday
01.03.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
08.03.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
15.03.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
22.03.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
12.04.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
19.04.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
26.04.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
03.05.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
17.05.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
24.05.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
07.06.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
14.06.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
21.06.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday
28.06.
11:30 - 13:45
Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Information
Aims, contents and method of the course
This lecture will be an introduction to set theory, in particular to independence proofs. The goal is to establish the independence of the continuum hypothesis. We will start from the ZFC axioms and introduce ordinals and cardinals. Then we will define Gödel's constructible universe L and show that it is a model of ZFC and GCH, the generalized continuum hypothesis. Furthermore, we will introduce measurable cardinals and show that they cannot exist in L. If time allows, we will discuss variants L[U] of L which allow the existence of a measurable cardinal. Finally, we will introduce Cohen's forcing technique and show that there is a model of ZFC in which the continuum hypothesis does not hold.
Assessment and permitted materials
Oral exam by appointment, no material allowed during the exam. Possible dates for the exam can be found here: https://muellersandra.github.io/teaching/axiomatic-set-theory-sose-2018/
Minimum requirements and assessment criteria
See above. To take the oral exam it is necessary to enroll in the class by filling your name in the "Teilnehmerliste" within the first two weeks of the semester.
Examination topics
All contents of the lectures.
Reading list
Association in the course directory
MLOM
Last modified: Mo 07.09.2020 15:40