Universität Wien FIND
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250100 VO Axiomatic set theory 1 (2018S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Thursday 01.03. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 08.03. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 15.03. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 22.03. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 12.04. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 19.04. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 26.04. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 03.05. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 17.05. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 24.05. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 07.06. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 14.06. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 21.06. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101
Thursday 28.06. 11:30 - 13:45 Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101

Information

Aims, contents and method of the course

This lecture will be an introduction to set theory, in particular to independence proofs. The goal is to establish the independence of the continuum hypothesis. We will start from the ZFC axioms and introduce ordinals and cardinals. Then we will define Gödel's constructible universe L and show that it is a model of ZFC and GCH, the generalized continuum hypothesis. Furthermore, we will introduce measurable cardinals and show that they cannot exist in L. If time allows, we will discuss variants L[U] of L which allow the existence of a measurable cardinal. Finally, we will introduce Cohen's forcing technique and show that there is a model of ZFC in which the continuum hypothesis does not hold.

Assessment and permitted materials

Oral exam by appointment, no material allowed during the exam. Possible dates for the exam can be found here: https://muellersandra.github.io/teaching/axiomatic-set-theory-sose-2018/

Minimum requirements and assessment criteria

See above. To take the oral exam it is necessary to enroll in the class by filling your name in the "Teilnehmerliste" within the first two weeks of the semester.

Examination topics

All contents of the lectures.

Reading list


Association in the course directory

MLOM

Last modified: Mo 07.09.2020 15:40