Warning! The directory is not yet complete and will be amended until the beginning of the term.
250110 VO Introduction to Reinforcement Learning (2022S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Wednesday 29.06.2022 18:30 - 20:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 01.07.2022 09:45 - 11:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.07.2022
- Thursday 09.11.2023
- Tuesday 02.07.2024
Lecturers
Classes (iCal) - next class is marked with N
- Friday 04.03. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 18.03. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 25.03. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 01.04. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 08.04. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 29.04. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 06.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 13.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 20.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 27.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 03.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
To get a grade on the course you must either do the final exam or submit a course project/paper.
Minimum requirements and assessment criteria
• Basic Probability and Statistics
• Basics of optimization (constraint optimization, cost functions, gradient descent, etc.)
• Familiarity with machine learning will be useful but not necessary.
• Basics of optimization (constraint optimization, cost functions, gradient descent, etc.)
• Familiarity with machine learning will be useful but not necessary.
Examination topics
Reading list
There is no official textbook for the class. Some references with links are listed on moodle.
Association in the course directory
MAMV
Last modified: We 03.07.2024 00:17
1 Review of probability and stochastics.
2. Markov Decision Process and the modeling of a reinforcement learning problem
3. Exact solutions and adding stochasticity.
4. Policy gradient estimation
5. Practical policy optimization methods such as TRPO and PPO.