250166 VO Mathematics of Vision and Reinforcement Learning (2023W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Friday 06.10. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 13.10. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 20.10. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 27.10. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 03.11. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.11. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.11. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.11. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 01.12. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 15.12. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 12.01. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 19.01. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 26.01. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Lectures and slides will be available on Moodle
Assessment and permitted materials
To get a grade on the course, you must either:
• submit a course project/paper followed by an interview.
• Successfully pass a final exam
• submit a course project/paper followed by an interview.
• Successfully pass a final exam
Minimum requirements and assessment criteria
• Basic Probability and Statistics (Markov Process)
• Basics of optimization (constraint optimization, cost functions, gradient decent etc.)
• Familiarity with machine learning will be useful but not necessary.
• Basics of optimization (constraint optimization, cost functions, gradient decent etc.)
• Familiarity with machine learning will be useful but not necessary.
Examination topics
Reading list
Association in the course directory
MAMV
Last modified: Fr 05.04.2024 08:46