Universität Wien FIND
Warning! The directory is not yet complete and will be amended until the beginning of the term.

260007 VO Advanced Computational Physics (2020S)

6.00 ECTS (4.00 SWS), SPL 26 - Physik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Vorbesprechung: 10.03.2020

Tuesday 10.03. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Tuesday 17.03. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday 19.03. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday 24.03. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday 26.03. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday 31.03. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday 02.04. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday 21.04. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday 23.04. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday 28.04. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday 30.04. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday 05.05. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday 07.05. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday 12.05. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday 14.05. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday 19.05. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Tuesday 26.05. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday 28.05. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Thursday 04.06. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday 09.06. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Tuesday 16.06. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday 18.06. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday 23.06. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday 25.06. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien

Information

Aims, contents and method of the course

In one of the major paradigm shifts in physics in the past half century, computational physics, the application of purely computer-based methods to the solution of physical problems, has established itself as an independent "third methodology", in addition to the conventional approaches, experimental and theoretical Physics. Like its sister disciplines, computational physics is a method, rather than a specific subfield of physics, and thus is not limited to any particular area. Applications range from tests of approximate theoretical methods (by providing numerically exact results for well-chosen model systems) to replacement/extension of laboratory experiments to extreme space and time scales or physical conditions. Thanks to the continuous increase in computer power, more and more sophisticated physical models may be simulated in detail and their properties investigated at will.
This course, which aims at depth rather than breadth, offers an introduction to the most important many-body simulation techniques in statistical mechanics and will cover the following topics:
- Monte Carlo simulations
- Molecular Dynamics
- Long-range interactions
" Entropy and free energy
- Rare events
Since the emphasis of the course is on providing practical knowledge, all algorithms are explained in detail and illustrated by sample programs, so that students may readily extend them or write their own code if they wish to. For the same reason, the accompanying problem class is considered an integral part of the course.
Prerequisites: Computational Physics I or equivalent, fundamentals of Statistical Mechanics and Quantum Mechanics, good programming skills.

Assessment and permitted materials

The written exam will be conducted in the format of a "digital written exam with exam sheet for download" (to be taken from home). ATTENTION: For the convenience of the participants, the exam questions will be provided for download on a separate Moodle page as soon at the official start of the exam, and solutions must be uploaded not later than 30 minutes after the official end of the exam to its Moodle page.

Registration for the exam is possible via u:space as usual.

The exam is in the format of an "open-book exam", i.e. it has to be written independently without anybody else's help, but documents like the lecture notes accompanying the lecture or textbooks may be used. Answers may be written on the print-outs of the provided question sheets or on separate paper.

For upload, your hand-written solutions should be digitized with a scanner or photographed with a cell phone. Please upload all your answers in a singe pdf file.

Minimum requirements and assessment criteria

At the exam, at least 50% of the possible points need to be obtained for a positive grade. The grading is done according to the following scheme:
0 -50%: nicht genügend (5)
50 - 63% genügend (4)
63 - 77%: befriedigend (3)
77 - 90%: gut (2)
90 - 100%: sehr gut (1)

Examination topics

Exam topics include all topics of the lecture notes that are treated in the lecture. The lecture notes are available on the Moodle page of the course.

Reading list

M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1978.
D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 2002.
D.C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, 1995.
M. E. Newman, G. T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford, 1999.
M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press, 2010.
David P. Landau and K. Binder, Monte Carlo Simulations in Statistical Physics, Cambridge University Press, 2009.

Association in the course directory

M-CORE 1, MaG 7, MaG 8

Last modified: Sa 13.02.2021 18:08