Universität Wien

260067 VO Computational Physics (2020W)

4.00 ECTS (3.00 SWS), SPL 26 - Physik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

The first lecture on October 9 will take place in the Collaborate session "Vorbesprechung", which can be found in the Moodle instance of the course.

  • Friday 09.10. 08:45 - 10:00 Digital
  • Monday 12.10. 16:45 - 17:45 Digital
  • Friday 16.10. 08:45 - 10:00 Digital
  • Monday 19.10. 16:45 - 17:45 Digital
  • Friday 23.10. 08:45 - 10:00 Digital
  • Friday 30.10. 08:45 - 10:00 Digital
  • Friday 06.11. 08:45 - 10:00 Digital
  • Monday 09.11. 16:45 - 17:45 Digital
  • Friday 13.11. 08:45 - 10:00 Digital
  • Monday 16.11. 16:45 - 17:45 Digital
  • Friday 20.11. 08:45 - 10:00 Digital
  • Monday 23.11. 16:45 - 17:45 Digital
  • Friday 27.11. 08:45 - 10:00 Digital
  • Monday 30.11. 16:45 - 17:45 Digital
  • Friday 04.12. 08:45 - 10:00 Digital
  • Monday 07.12. 16:45 - 17:45 Digital
  • Friday 11.12. 08:45 - 10:00 Digital
  • Monday 14.12. 16:45 - 17:45 Digital
  • Friday 18.12. 08:45 - 10:00 Digital
  • Friday 08.01. 08:45 - 10:00 Digital
  • Monday 11.01. 16:45 - 17:45 Digital
  • Friday 15.01. 08:45 - 10:00 Digital
  • Monday 18.01. 16:45 - 17:45 Digital
  • Friday 22.01. 08:45 - 10:00 Digital

Information

Aims, contents and method of the course

In one of the major paradigm shifts in physics in the past half century, Computational Physics, the application of purely computer-based methods to the solution of physical problems, has established itself as an independent "third methodology", in addition to the conventional approaches, Experimental and Theoretical Physics. Like its sister disciplines, Computational Physics is a method, rather than a specific subfield of physics, and thus is not limited to any particular area: Applications range from tests of approximate theoretical methods (by providing numerically exact results for well-chosen model systems) to replacement/extension of laboratory experiments to extreme space and time scales or physical conditions. Thanks to the continuous increase in computer power, more and more sophisticated physical models may be simulated in detail and their properties investigated at will.
The first part of this two-semester course, which aims at depth rather than breadth, offers an introduction to the following topics:
(Fast) Fourier Transform
Finite Difference Equations
Partial Differential Equations
Solution of Large Systems of Equations
Finite Elements
Monte Carlo Methods.

Assessment and permitted materials

Die Leistungskontrolle erfolgt über eine schriftliche Prüfung über den gesamten Vorlesungsstoff. Aufgrund von COVID19 wird die komplette Lehrveranstaltung virtuell abgehalten.

Minimum requirements and assessment criteria

Um eine positive Benotung zu erhalten, ist es notwendig bei der Prüfung mindestens 50% der maximal möglichen Punktezahl zu erreichen.

Examination topics

Fourier-Transformation, Differenzengleichungen, partielle Differentialgleichungen, Lösung großer Gleichungssysteme, Finite-Differenzen-Methode, Finite-Elemente-Method

Reading list

Das Skriptum zur Vorlesung steht auf der Moodle-Seite der Vorlesung zum Download bereit.

Association in the course directory

WPF 1, MF 1, MF 9, UF MA PHYS 01a, UF MA PHYS 01b

Last modified: Fr 12.05.2023 00:21