Warning! The directory is not yet complete and will be amended until the beginning of the term.
260069 PUE Computational Physics (2019W)
Continuous assessment of course work
Labels
Registration/Deregistration
- Registration is open from Mo 02.09.2019 08:00 to We 25.09.2019 23:59
- Deregistration possible until Th 31.10.2019 23:59
Details
max. 25 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
Friday
11.10.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
18.10.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
25.10.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
08.11.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
15.11.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
22.11.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
29.11.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
06.12.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
13.12.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
10.01.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
17.01.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Friday
24.01.
15:30 - 17:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Information
Aims, contents and method of the course
Assessment and permitted materials
Submission of exercises and presentation at the blackboard
Presentation of a small project at the end of the course
Presentation of a small project at the end of the course
Minimum requirements and assessment criteria
Minimum requirements: exercises and projects must be positive to pass the exam
Evaluation: exercises (80%), project (20%)
Evaluation: exercises (80%), project (20%)
Examination topics
Reading list
Skriptum zur Vorlesung (Moodle)
Association in the course directory
WPF 1, MF 1, MF 9, UF MA PHYS 01a, UF MA PHYS 01b
Last modified: Mo 07.09.2020 15:21
The first part of this two-semester course, which aims at depth rather than breadth, offers an introduction to the following topics:
(Fast) Fourier Transform
Finite Difference Equations
Partial Differential Equations
Solution of Large Systems of Equations
Finite Elements
Monte Carlo Methods.