Universität Wien FIND
Warning! The directory is not yet complete and will be amended until the beginning of the term.

260082 VU Quantum Machine Learning for Computational Materials Design (2020W)

5.00 ECTS (3.00 SWS), SPL 26 - Physik
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 15 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

Due to the pandemic this course will be given online. Any further up-to-date information will be provided in time to all students who registered.

Thursday 08.10. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 15.10. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 22.10. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 29.10. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 05.11. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 12.11. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 19.11. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 26.11. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 03.12. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 10.12. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 17.12. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 07.01. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 14.01. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Thursday 21.01. 09:00 - 12:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien

Information

Aims, contents and method of the course

The typical outline is
-Introduction
-Quantum mechanics in chemical compound space
-Machine learning in chemical compound space
-High-Performance Computing
-Examples

Assessment and permitted materials

Graded homework assignments

Minimum requirements and assessment criteria

This is an advanced, research oriented course (Master and PhD students typically attend) which I've been developing over the last couple of years. It closely follows the research domain where my lab is actively contributing. Prerequisites include experience with:
-programming
-quantum mechanics
-applied math
-atomistic simulation

Examination topics

Topics covered in the course.

Reading list

Review articles written by author and other peers in the field.

Association in the course directory

M-VAF A 2, M-VAF B

Last modified: Fr 17.09.2021 14:49