Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

260226 VO Linear Algebra for Physicists (2020W)

4.00 ECTS (4.00 SWS), SPL 26 - Physik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Friday 02.10. 08:30 - 10:00 Digital
  • Monday 05.10. 08:30 - 10:00 Digital
  • Friday 09.10. 08:30 - 10:00 Digital
  • Monday 12.10. 08:30 - 10:00 Digital
  • Friday 16.10. 08:30 - 10:00 Digital
  • Monday 19.10. 08:30 - 10:00 Digital
  • Friday 23.10. 08:30 - 10:00 Digital
  • Friday 30.10. 08:30 - 10:00 Digital
  • Friday 06.11. 08:30 - 10:00 Digital
  • Monday 09.11. 08:30 - 10:00 Digital
  • Friday 13.11. 08:30 - 10:00 Digital
  • Monday 16.11. 08:30 - 10:00 Digital
  • Friday 20.11. 08:30 - 10:00 Digital
  • Monday 23.11. 08:30 - 10:00 Digital
  • Friday 27.11. 08:30 - 10:00 Digital
  • Monday 30.11. 08:30 - 10:00 Digital
  • Friday 04.12. 08:30 - 10:00 Digital
  • Monday 07.12. 08:30 - 10:00 Digital
  • Friday 11.12. 08:30 - 10:00 Digital
  • Monday 14.12. 08:30 - 10:00 Digital
  • Friday 18.12. 08:30 - 10:00 Digital
  • Friday 08.01. 08:30 - 10:00 Digital
  • Monday 11.01. 08:30 - 10:00 Digital
  • Friday 15.01. 08:30 - 10:00 Digital
  • Monday 18.01. 08:30 - 10:00 Digital
  • Friday 22.01. 08:30 - 10:00 Digital

Information

Aims, contents and method of the course

The students obtain basic knowledge and skills in linear algebra.

Content: elementary algebraic structures (groups, fields), geometry in the plane and in hree-dimensional space (vevtor addition, scalar product, vektor product, sum convention, Kronecker symbol, epsilon symbol), real and complex vector spaces, linear operators and matrices, quotient spaces (equivalence relation), dual space, systems of linear equations, determinants, eigenvalues and normal forms (diagonalizability, Jordan normal form), Euclidean und unitary vector spaces, tensor product.

Assessment and permitted materials

Written exam (multiple choice)

Minimum requirements and assessment criteria

Acquiring basic skills in linear algebra that are central to physics and related fields.

Examination topics

Content of the lecture course

Reading list

Klaus Jänich: Lineare Algebra (Springer, 2008),
eBook der Universitätsbibliothek unter http://ubdata.univie.ac.at/AC06432777
and a supplementary script of the lecturer

Association in the course directory

LINALG, P 1

Last modified: Tu 14.11.2023 00:23