Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching and access tests can be found at https://studieren.univie.ac.at/en/info.

Warning! The directory is not yet complete and will be amended until the beginning of the term.

260226 VO Linear Algebra for Physicists (2020W)

4.00 ECTS (4.00 SWS), SPL 26 - Physik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Friday 02.10. 08:30 - 10:00 Digital
Monday 05.10. 08:30 - 10:00 Digital
Friday 09.10. 08:30 - 10:00 Digital
Monday 12.10. 08:30 - 10:00 Digital
Friday 16.10. 08:30 - 10:00 Digital
Monday 19.10. 08:30 - 10:00 Digital
Friday 23.10. 08:30 - 10:00 Digital
Friday 30.10. 08:30 - 10:00 Digital
Friday 06.11. 08:30 - 10:00 Digital
Monday 09.11. 08:30 - 10:00 Digital
Friday 13.11. 08:30 - 10:00 Digital
Monday 16.11. 08:30 - 10:00 Digital
Friday 20.11. 08:30 - 10:00 Digital
Monday 23.11. 08:30 - 10:00 Digital
Friday 27.11. 08:30 - 10:00 Digital
Monday 30.11. 08:30 - 10:00 Digital
Friday 04.12. 08:30 - 10:00 Digital
Monday 07.12. 08:30 - 10:00 Digital
Friday 11.12. 08:30 - 10:00 Digital
Monday 14.12. 08:30 - 10:00 Digital
Friday 18.12. 08:30 - 10:00 Digital
Friday 08.01. 08:30 - 10:00 Digital
Monday 11.01. 08:30 - 10:00 Digital
Friday 15.01. 08:30 - 10:00 Digital
Monday 18.01. 08:30 - 10:00 Digital
Friday 22.01. 08:30 - 10:00 Digital

Information

Aims, contents and method of the course

The students obtain basic knowledge and skills in linear algebra.

Content: elementary algebraic structures (groups, fields), geometry in the plane and in hree-dimensional space (vevtor addition, scalar product, vektor product, sum convention, Kronecker symbol, epsilon symbol), real and complex vector spaces, linear operators and matrices, quotient spaces (equivalence relation), dual space, systems of linear equations, determinants, eigenvalues and normal forms (diagonalizability, Jordan normal form), Euclidean und unitary vector spaces, tensor product.

Assessment and permitted materials

Written exam (multiple choice)

Minimum requirements and assessment criteria

Acquiring basic skills in linear algebra that are central to physics and related fields.

Examination topics

Content of the lecture course

Reading list

Klaus Jänich: Lineare Algebra (Springer, 2008),
eBook der Universitätsbibliothek unter http://ubdata.univie.ac.at/AC06432777
and a supplementary script of the lecturer

Association in the course directory

LINALG, P 1

Last modified: Mo 13.09.2021 09:29