300155 UE Introduction to Biological Data Science (2024W)
(Python and R)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Th 12.09.2024 14:00 to Th 26.09.2024 18:00
- Deregistration possible until Tu 15.10.2024 18:00
Details
max. 15 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
Die Lehrveranstaltung findet im Raum 5.021 statt, UBB, Djerassiplatz 1, 1030 Wien, 5. OG
Please bring your own laptops!- Wednesday 02.10. 13:00 - 15:00 Ort in u:find Details
- Wednesday 09.10. 13:00 - 15:00 Ort in u:find Details
- Wednesday 16.10. 13:00 - 15:00 Ort in u:find Details
- Wednesday 23.10. 13:00 - 15:00 Ort in u:find Details
- Wednesday 30.10. 13:00 - 15:00 Ort in u:find Details
- Wednesday 06.11. 13:00 - 15:00 Ort in u:find Details
- Wednesday 13.11. 13:00 - 15:00 Ort in u:find Details
- Wednesday 20.11. 13:00 - 15:00 Ort in u:find Details
- Wednesday 27.11. 13:00 - 15:00 Ort in u:find Details
- Wednesday 04.12. 13:00 - 15:00 Ort in u:find Details
- Wednesday 11.12. 13:00 - 15:00 Ort in u:find Details
- Wednesday 08.01. 13:00 - 15:00 Ort in u:find Details
- Wednesday 15.01. 13:00 - 15:00 Ort in u:find Details
- Wednesday 22.01. 13:00 - 15:00 Ort in u:find Details
- Wednesday 29.01. 13:00 - 15:00 Ort in u:find Details
Information
Aims, contents and method of the course
Assessment and permitted materials
Programming homeworks, final project and a final exam.Active class participation is expected from all students.
Minimum requirements and assessment criteria
Active participation in class and programming tutorials.[Assessment criteria]
1: >87%
2: 76 - 87%
3: 64 - 75%
4: 51 - 63%
5: <=50%
1: >87%
2: 76 - 87%
3: 64 - 75%
4: 51 - 63%
5: <=50%
Examination topics
Able to use both Python and R for basic data analysis and visualisation tasksfamiliar with the most important concepts of data modelling and machine learninghas in depth understanding of some at least one complex biological datasets (Phylogenetic trees, behavioural time-series, neural data), demonstrated in the final project.
Reading list
Zhang, N. (2020). A tour of data science: learn R and Python in parallel. CRC Press.Statistical Thinking for the 21st Century:
https://statsthinking21.org/
https://statsthinking21.github.io/statsthinking21-python/index.html
https://statsthinking21.github.io/statsthinking21-figures-R/intro.htmlRevell, L. J., & Harmon, L. J. (2022). Phylogenetic comparative methods in R. Princeton University Press.Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
https://statsthinking21.org/
https://statsthinking21.github.io/statsthinking21-python/index.html
https://statsthinking21.github.io/statsthinking21-figures-R/intro.htmlRevell, L. J., & Harmon, L. J. (2022). Phylogenetic comparative methods in R. Princeton University Press.Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
Association in the course directory
CoBeNe 3
Last modified: Tu 01.10.2024 17:46
The course will start with an introduction to both the R and the Python programming languages, followed by some introductory concepts of data analysis. Next, we will focus on data visualisation methods, followed by an introduction to machine learning.
At the final part of the we will look at more specialised methods for biology, focusing on the analysis of behavioural, neural and evolutionary data.