Universität Wien

300445 UE Analysis of ecological data (UE) - univariate methods (2016W)

2.00 ECTS (1.00 SWS), SPL 30 - Biologie
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 30 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 05.10. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 12.10. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 19.10. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 09.11. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 16.11. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 23.11. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 30.11. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 07.12. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 14.12. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 11.01. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 18.01. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
  • Wednesday 25.01. 18:00 - 19:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG

Information

Aims, contents and method of the course

The lecture will present an overview (theoretical background, applications) on important tools of data analysis in contemporary ecological research. Special attention will be paid to the harmonisation of research questions, experimental design and analytical methods with respect to own research tasks like diploma theses or dissertations. Central topics: General aspects of designing ecological studies - Establishing hypotheses and deriving predictions, statistical tests, experimental design, power analysis; Analysis of variance (ANOVA); Regression analysis and its derivates (GLM, GAM, Survival Analysis, Classification Trees); Analysis of structured data and time series (Mixed Models).

Assessment and permitted materials

written test and 1 excercise during the course.

Paul Teetor: The R Cookbook. O'Reilly 2011.
Michael J. Crawley: The R book. Wiley 2012.

Minimum requirements and assessment criteria

Examination topics

Lecture and practical: Analysis of examplary datasets with the statistical software package R

Reading list

There are now many books for R, e.g.:

Paul Teetor: The R Cookbook. O'Reilly 2011.
Michael J. Crawley: The R book. Wiley 2012.

Association in the course directory

MEC-5, MZO W-9

Last modified: Mo 07.09.2020 15:43