Universität Wien

250009 VO Partial differential equations (2018W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 03.10. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 10.10. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 17.10. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 24.10. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 31.10. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 07.11. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 14.11. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 21.11. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 28.11. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 05.12. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 12.12. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 09.01. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 16.01. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 23.01. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 30.01. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Provides a basic introduction to Partial Differential Equations

Assessment and permitted materials

oral exam

Minimum requirements and assessment criteria

Passing the oral exam

Examination topics

Introduction of the basic types of linear partial differential equations
(Laplace's, heat and wave equation),
Nonlinear partial differential equations of first order and the method of characteristics,
Fouriertransformation for the solution of PDEs and
applications of PDEs

Reading list

Evans: Partial Differential Equations

Association in the course directory

DGL

Last modified: Mo 07.09.2020 15:40