250067 VO Continuum mechanics with applications to image processing (2019S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 06.03. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.03. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 20.03. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.03. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.04. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.04. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.05. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.05. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.05. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.05. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.06. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.06. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.06. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.06. 13:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The course aims to first introduce the modelling and geometric foundations of balance and constitutive laws in continuum mechanics. Then, we will discuss the basic analysis of some such models, with an emphasis on variational methods for linearized and finite elasticity. Finally, time permitting, we will explore some examples of the cross-talk between continuum mechanics and imaging science: image registration using elastic energies, connections between viscoplastic materials and image denoising, and between fracture mechanics and image segmentation.
Assessment and permitted materials
Oral exam, either based on the contents of the course or on the reading of some pre-agreed additional material.
Minimum requirements and assessment criteria
Examination topics
Reading list
P. G. Ciarlet. Mathematical elasticity, Volume I: Three-dimensional elasticity. North-Holland, 1988.H. Attouch, G. Buttazzo, G. Michaille. Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization. MPS-SIAM series on optimization, 2006/2014.
Association in the course directory
MANV, MAMV
Last modified: Mo 07.09.2020 15:40