250133 VO Control Theory (2019S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 07.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 04.04. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.04. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 02.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 06.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 13.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 27.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Given a physical system described by a differential equation with some tunable control parameter, we want to analyse if we can find an optimal choice for this parameter to steer the system in an optimal way (in the sense of minimising a given energy) into a desired state.
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Examination topics
The material presented in the lecture.
Reading list
Nice books on control theory of ordinary differential equations are for example:
- Ernest B. Lee and Lawrence Markus. “Foundations of Optimal Control Theory”. Robert E. Krieger Publishing Company, 1986.
- Jack Macki and Aaron Strauss. “Introduction to Optimal Control Theory”. Undergraduate
Texts in Mathematics. Springer, 1982.
- Eduardo D. Sontag. “Mathematical Control Theory. Deterministic Finite Dimensional
Systems”. 2nd edition. Texts in Applied Mathematics 6. Springer, 1998.
- Richard Vinter. “Optimal Control”. Birkhäuser, 2010.
- Ernest B. Lee and Lawrence Markus. “Foundations of Optimal Control Theory”. Robert E. Krieger Publishing Company, 1986.
- Jack Macki and Aaron Strauss. “Introduction to Optimal Control Theory”. Undergraduate
Texts in Mathematics. Springer, 1982.
- Eduardo D. Sontag. “Mathematical Control Theory. Deterministic Finite Dimensional
Systems”. 2nd edition. Texts in Applied Mathematics 6. Springer, 1998.
- Richard Vinter. “Optimal Control”. Birkhäuser, 2010.
Association in the course directory
MAMV, MANV
Last modified: Mo 07.09.2020 15:40