262007 VO Numerical Mathematics 2 (2023S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Thursday 29.06.2023
- Wednesday 05.07.2023
- Friday 06.10.2023
- Thursday 09.11.2023
- Friday 01.12.2023
- Friday 26.01.2024
- Thursday 15.02.2024
Lecturers
Classes (iCal) - next class is marked with N
Kick-off meeting 6.3. 9:00 Josef-Stefan HS (lecture subsequently)
- Monday 06.03. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 20.03. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 27.03. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 17.04. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 24.04. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 08.05. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 15.05. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 22.05. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 05.06. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 12.06. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 19.06. 09:00 - 11:45 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Minimum requirement: positive assessment of oral exam.
Examination topics
Topics discussed in the lecture.
Reading list
Lecture notes.
Association in the course directory
PM-NUM2
Last modified: Tu 09.01.2024 14:06
tasks of numerical mathematics and modeling, in particular about the
following topics: Numerical linear algebra: Krylov (sub-)spaces and
iteration methods (Arnoldi, Lanczos, CG, GMRES etc.), sparse linear algebra; Fundamentals of Monte Carlo simulation; Analysis: Interpolation of curves and surfaces, multidimensional integration (Monte-Carlo, Quasi-Monte-Carlo);
linear optimization; Numerical solution of ordinary differential equations (one-step methods, multi-step methods,
boundary value problems); Numerical solution of partial differential equations
(FEM, finite difference method).