Warning! The directory is not yet complete and will be amended until the beginning of the term.
280390 VO MA PE 01 VO Inverse Problems (NPI) (2021W)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
max. 10 participants
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
The course will start from the 2nd week of semester, i.e. from October 14, due to organizational reasons.
- Thursday 07.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 14.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 21.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 28.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 04.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 11.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 18.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 25.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 02.12. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 09.12. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 16.12. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 13.01. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 20.01. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 27.01. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral examination
Minimum requirements and assessment criteria
Examination topics
Reading list
R.C. Aster, B. Borchers, C.H. Thurber: Parameter Estimation and Inverse Problems, Elsevier, 2013.
Association in the course directory
Last modified: Mo 26.09.2022 13:10
-- Linear regression (and statistical aspects of least squares)
-- Discretization of inverse problems
-- Ill-posed problems and rank deficiency
-- Tikhonov regularization
-- Nonlinear regression (Newton method etc).
-- Bayesian approachAll of these topics will be complemented with exercises (Matlab or Python).