280390 VO Inverse Problems (2023W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
max. 20 participants
Language: English
Examination dates
- Thursday 01.02.2024
- Thursday 08.02.2024
- Thursday 15.02.2024
- Thursday 22.02.2024
- Wednesday 06.03.2024
Lecturers
Classes (iCal) - next class is marked with N
The course will start from 12th October
- Thursday 05.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 12.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 19.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 09.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 16.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 23.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 30.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 07.12. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 14.12. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 11.01. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 18.01. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 25.01. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral examination. Examination dates are by appointment.
Minimum requirements and assessment criteria
Knowledge of linear algebra and basic programming skills.
Participation in the course and project assignments.
Participation in the course and project assignments.
Examination topics
General knowledge and understanding of the topics covered in the course.
Reading list
R.C. Aster, B. Borchers, C.H. Thurber: Parameter Estimation and Inverse Problems, Elsevier, 2013
Association in the course directory
MA PE 01
Last modified: We 06.03.2024 15:46
-- Linear regression (and statistical aspects of least squares)
-- Discretization of continuous inverse problems
-- Rank deficiency and ill-conditioning (the SVD and the generalized inverse)
-- Tikhonov regularization
-- Iterative methods (CG and CGLS methods)
-- Nonlinear regression (Newton's method etc).All of these topics will be complemented with exercises (Matlab or Octave).