Universität Wien

040164 KU Python for Finance I (MA) (2020W)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 35 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 05.10. 13:15 - 14:45 Digital
  • Montag 12.10. 13:15 - 14:45 Digital
  • Montag 19.10. 13:15 - 14:45 Digital
  • Montag 09.11. 13:15 - 14:45 Digital
  • Montag 16.11. 13:15 - 14:45 Digital
  • Montag 23.11. 13:15 - 14:45 Digital
  • Montag 30.11. 13:15 - 14:45 Digital
  • Montag 07.12. 13:15 - 14:45 Digital
  • Montag 14.12. 13:15 - 14:45 Digital
  • Montag 11.01. 13:15 - 14:45 Digital
  • Montag 18.01. 13:15 - 14:45 Digital
  • Montag 25.01. 13:15 - 14:45 Digital

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The course provides an introduction to Python, a programming language that has become popular in the financial industry besides other quantitative fields. Participants do not need prior programming experience, though they should have successfully completed Basics of Finance or comparable courses.
We will start with an introduction to programming and the basics of Python. Subsequently, the course will consist of an introduction to some of the Python packages most relevant for applications in Finance.
This course is of an applied nature, with the goal of enabling students to use Python to solve problems they may encounter in practice.

Main Topics of the Course:

1. Python and Programming Basics
2. Numerical Computing with NumPy
3. Data Analysis with pandas

Other topics: data Visualization with matplotlib and regression analysis with statsmodels and linearmodels.

Art der Leistungskontrolle und erlaubte Hilfsmittel

The grade will be based on homework exercises that participants are expected to present in class, active class participation, and a final exam. The final exam will take place on Moodle on January, 25.

The course will be taught via video conferencing.

Mindestanforderungen und Beurteilungsmaßstab

60% homework exercises
10% active class participation
30% final exam

Minimum requirement for a positive grade: a total of 50%.

Prüfungsstoff

All material covered in class.

Literatur

Main reference:

Sheppard, Kevin. Introduction to Python for Econometrics, Statistics and Data Analysis, 2019. https://www.kevinsheppard.com/files/teaching/python/notes/python_introduction_2019.pdf

McKenney, Wes. Python for Data Analysis, 2nd edition, 2017. O'Reilly Media.

Official Python documentation and tutorials: https://docs.python.org/3/tutorial/index.html

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Fr 12.05.2023 00:12