Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
040327 KU Introductory Econometrics (MA) (2025S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 10.02.2025 09:00 bis Di 18.02.2025 12:00
- Anmeldung von Mi 26.02.2025 09:00 bis Do 27.02.2025 12:00
- Abmeldung bis Fr 14.03.2025 23:59
Details
max. 200 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- N Montag 03.03. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 06.03. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 10.03. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 13.03. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 17.03. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 20.03. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 24.03. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 27.03. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 31.03. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 03.04. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Freitag 04.04. 09:45 - 11:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 07.04. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 10.04. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 28.04. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Freitag 02.05. 09:45 - 11:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 12.05. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 15.05. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Freitag 16.05. 09:45 - 11:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 19.05. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 22.05. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 26.05. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Freitag 30.05. 09:45 - 11:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 02.06. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 05.06. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 12.06. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 16.06. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Freitag 20.06. 09:45 - 11:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 30.06. 11:30 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Unexcused absence from the first session will automatically lead to deregistration in order to allow students on the waiting list to move up. If you are unable to attend the first session, you must notify me in advance via email in order to continue attending the course.Assessment: The assessment consists of 2 tests during the semester (midterm, final exam – each 45%) and homework (2 exercises in groups of up to 4, each 5%).The tests will take place on following days:
06.05.2025: 15.00-16.30h
23.06.2025: 11.30-13.00hThe tests will take 60 minutes. The questions will refer to general material covered in the course, analytical derivations, and interpretations of empirical results. Each test will count for 45% and homework for 10%.Students who either failed (i.e., obtained less than 50%) or missed one of the two exams during the semester are eligible to participate in the retake exam. The retake exam takes place on 08.07.2025. Students who want to participate in the retake exam need to register by 01.07.2025 the latest. The result of the retake exam replaces the worse of the two exams during the semester.
06.05.2025: 15.00-16.30h
23.06.2025: 11.30-13.00hThe tests will take 60 minutes. The questions will refer to general material covered in the course, analytical derivations, and interpretations of empirical results. Each test will count for 45% and homework for 10%.Students who either failed (i.e., obtained less than 50%) or missed one of the two exams during the semester are eligible to participate in the retake exam. The retake exam takes place on 08.07.2025. Students who want to participate in the retake exam need to register by 01.07.2025 the latest. The result of the retake exam replaces the worse of the two exams during the semester.
Mindestanforderungen und Beurteilungsmaßstab
To pass the course, a minimum level of 45% has to be reached.Rating:
[85%; 100%]: 1.0
[70%; 85%): 2.0
[55%;70%): 3.0
[45%; 55%): 4.0
[0; 45%): 5.0Examination language: English.
[85%; 100%]: 1.0
[70%; 85%): 2.0
[55%;70%): 3.0
[45%; 55%): 4.0
[0; 45%): 5.0Examination language: English.
Prüfungsstoff
Examination Topics
All material covered in the course.
All material covered in the course.
Literatur
Main books:
Greene, W.H. (2019): Econometric Analysis, 8th edition, Pearson.
Stock, J. H., and Watson, M. W. (2020), Introduction to Econometrics, Global Edition. Pearson Education Limited
Wooldridge, Jeffrey M. Introductory econometrics: A modern approach. 7th edition, Cengage learning, 2020.Additional books:
Angrist, J.D. and Pischke, J.-S. (2009): Mostly Harmless Econometrics: An Empiricst's Companion, Princeton University Press.
Cunningham, Scott. Causal inference: The mixtape. Yale university press, 2021.
Wooldridge, Jeffrey M. Econometric analysis of cross section and panel data. MIT press, 2010.
Hanck, C., Arnold, M., Gerber, A., and Schmelzer, M. (2020): Introduction to Econometrics with R, Online book on : https://www.econometrics-with-r.org/. Based on Stock, J. H., and Watson, M. W. (2015), Introduction to Econometrics, Global Edition. Pearson Education Limited.
Heiss, F. (2020): “Using R for Econometrics”. Online book on http://www.urfie.net/. Based on Wooldridge, J.M. (2019), Introductory Econometrics, Cengage Learning, Boston, MA.
Greene, W.H. (2019): Econometric Analysis, 8th edition, Pearson.
Stock, J. H., and Watson, M. W. (2020), Introduction to Econometrics, Global Edition. Pearson Education Limited
Wooldridge, Jeffrey M. Introductory econometrics: A modern approach. 7th edition, Cengage learning, 2020.Additional books:
Angrist, J.D. and Pischke, J.-S. (2009): Mostly Harmless Econometrics: An Empiricst's Companion, Princeton University Press.
Cunningham, Scott. Causal inference: The mixtape. Yale university press, 2021.
Wooldridge, Jeffrey M. Econometric analysis of cross section and panel data. MIT press, 2010.
Hanck, C., Arnold, M., Gerber, A., and Schmelzer, M. (2020): Introduction to Econometrics with R, Online book on : https://www.econometrics-with-r.org/. Based on Stock, J. H., and Watson, M. W. (2015), Introduction to Econometrics, Global Edition. Pearson Education Limited.
Heiss, F. (2020): “Using R for Econometrics”. Online book on http://www.urfie.net/. Based on Wooldridge, J.M. (2019), Introductory Econometrics, Cengage Learning, Boston, MA.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 23.01.2025 11:05
The course is a first-year master-level course in econometrics for students who already have a background in statistics and are familiar with the basic principles of probability theory, mathematical statistics and linear regression. The course provides an understanding of standard econometric methods. Knowledge of these methods allows one to understand modern empirical economic literature and to perform one's own analysis of cross-sectional, time series, and panel data. After following this course, students will have a good working knowledge of the key properties of standard econometric methods, including Least Squares Estimation, Instrumental Variables Estimation, and Maximum Likelihood, and their use in various applications.Topics include foundations of least squares estimation, applications of linear regression, endogeneity and instrumental variable estimation, stationary ARMA models, non-stationary time series models, fixed effects and random effects estimation, logistic regression, regression with limited dependent variables, experiments and quasi-experiments, and big data among others.If not compulsory, it is highly recommended to also attend the weekly TA session, which takes place in parallel to the lecture.