040501 KU Data Analysis for Marketing Decisions (MA) (2017W)
Prüfungsimmanente Lehrveranstaltung
Labels
Zusammenfassung
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Fr 08.09.2017 09:00 bis Do 21.09.2017 12:00
- Abmeldung bis Di 10.10.2017 23:59
An/Abmeldeinformationen sind bei der jeweiligen Gruppe verfügbar.
Gruppen
Gruppe 1
It is absolutely essential that all registered students attend the first session on October 4th, 2017 (Introduction/Vorbesprechung) as failure to do so will result in their exclusion from the course.Exchange students must have successfully completed at least a basic/introductory marketing course at their home university. To be able to attend the course they must hand in a relevant transcript/certificate by October 10th, 2017.http://international-marketing.univie.ac.at/teaching/master-bwibw/courses-ws-1718/#c637029
max. 30 Teilnehmer*innen
Sprache: Englisch
Lernplattform: Moodle
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 04.10. 09:45 - 11:15 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 11.10. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 18.10. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 25.10. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Freitag 03.11. 11:30 - 13:00 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 08.11. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Freitag 10.11. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 15.11. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 22.11. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 29.11. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 06.12. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 13.12. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 10.01. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 17.01. 09:45 - 11:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Mindestanforderungen und Beurteilungsmaßstab
In total, a minimum of 50 percent needs to be attained to pass the course. The grading system is the following: 0 to 49% - grade 5, 50 to 59% - grade 4, 60 to 69% - grade 3, 70 to 79% - grade 2, 80 to 100% - grade 1. Students who fail must repeat the entire course (and must register in the usual way next time the course is offered). No opportunities for make-ups will be offered.
Gruppe 2
It is absolutely essential that all registered students attend the first session on October 4th, 2017 (Introduction/Vorbesprechung) as failure to do so will result in their exclusion from the course.Exchange students must have successfully completed at least a basic/introductory marketing course at their home university. To be able to attend the course they must hand in a relevant transcript/certificate by October 10th, 2017.http://international-marketing.univie.ac.at/teaching/master-bwibw/courses-ws-1718/#c640675
max. 30 Teilnehmer*innen
Sprache: Englisch
Lernplattform: Moodle
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 04.10. 09:45 - 11:15 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 11.10. 13:15 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 18.10. 13:15 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 25.10. 13:15 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Freitag 03.11. 11:30 - 13:00 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 08.11. 13:15 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Freitag 10.11. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 15.11. 13:15 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 22.11. 13:15 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 29.11. 13:15 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 06.12. 13:15 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 13.12. 13:15 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 10.01. 13:15 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 17.01. 09:45 - 11:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Mindestanforderungen und Beurteilungsmaßstab
In total, a minimum of 50 percent needs to be attained to pass the course. The grading system is the following: 0 to 49% - grade 5, 50 to 59% - grade 4, 60 to 69% - grade 3, 70 to 79% - grade 2, 80 to 100% - grade 1. Students who fail must repeat the entire course (and must register in the usual way next time the course is offered). No opportunities for make-ups will be offered.
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Performance in the course will be assessed as follows:
Midterm exam: 20%
Team assignment: 35%
Final exam: 45%No material other than a dictonary may be used in the final exam.
Midterm exam: 20%
Team assignment: 35%
Final exam: 45%No material other than a dictonary may be used in the final exam.
Prüfungsstoff
The midterm exam is based on the topics covered in sessions 1 to 5 and the corresponding book chapters. The exam will include a combination of multiple-choice/single-choice questions.The team assignment is a more complex homework conducted by teams of 3 to 5 students; the same grade will be awarded to students belonging to the same team. Detailed instructions will be provided in the course.The final exam is in written form and will be in English. Examinable material includes all topics covered in theory and practice sessions as well as the corresponding book chapters. The exam will include questions of multiple formats (single choice questions, open-ended questions, mini cases, etc.).
Literatur
The required textbook is: Field, A. (2013), Discovering Statistics Using SPSS (4th edition), Sage Publications: London [ISBN: 978-1-4462-4918-5 (pbk)]. An accompanying website provides additional useful material (http://www.uk.sagepub.com/field4e/).A recommended additional textbook is: Diamantopoulos, D. and Schlegelmilch, B. (2000), Taking the Fear out of Data Analysis (2nd edition), South-Western CENGAGE Learning: London [ISBN: 978-1-86152-430-0].Reading the course material (slides, book chapters) is an essential part of the course (especially as preparation for the sessions!) and as important as attending lectures.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.09.2020 15:29
Theoretical introduction to basic research terms: data, variables, models, research process, sample, population, measurement scales, etc.
Introduction and familiarization with the statistical software SPSS
Clearing and preparing data for further analysis
Descriptive statistics: central tendency, variability, skewness, kurtosis
Testing statistical assumptions: normality, homogeneity of variance, homoscedasticity
Inferential statistics and hypothesis testing: parameter estimates, sampling error, confidence intervals, Type I and Type II errors, p-values, t-values
Performing comparisons: chi-square test, independent samples t-test, paired-sample t-tests, analysis of variance
Investigating relationships: bivariate correlation, partial correlation
Regression models: simple linear regression, multiple linear regression, logistic regression
Finding structures using Factor Analysis
Presenting, reporting and interpreting results
Identifying practical and theoretical implications drawn from statistical analysesThe classes involve a combination of formal theory lectures and practical lab sessions. Formal lectures primarily provide background knowledge on statistical inference and the selection of appropriate statistical techniques to analyse data. On the other hand, lab sessions and hands-on exercises introduce the SPSS environment and illustrate how to conduct and interpret different types of data analyses.