040501 KU Data Analysis for Marketing Decisions (MA) (2019S)
Prüfungsimmanente Lehrveranstaltung
Labels
It is absolutely essential that all registered students attend the first session on March 6th, 2019 (Introduction/Vorbesprechung) as failure to do so will result in their exclusion from the course.Exchange students must have successfully completed at least a basic/introductory marketing course at their home university. To be able to attend the course they must hand in a relevant transcript/certificate by March 10th, 2019.http://international-marketing.univie.ac.at/teaching/master-bwibw/courses-ss-19/#c650816
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 11.02.2019 09:00 bis Mi 20.02.2019 12:00
- Anmeldung von Di 26.02.2019 09:00 bis Mi 27.02.2019 12:00
- Abmeldung bis So 10.03.2019 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 06.03. 09:45 - 11:15 Hörsaal 9 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 13.03. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 20.03. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 27.03. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 03.04. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
-
Montag
08.04.
11:30 - 13:00
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 15 Oskar-Morgenstern-Platz 1 2.Stock - Mittwoch 10.04. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Freitag 12.04. 11:30 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Donnerstag 02.05. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 08.05. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 15.05. 13:15 - 14:45 Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 22.05. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 05.06. 09:45 - 11:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 12.06. 09:45 - 11:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Sound knowledge of statistics and data analysis is an essential requirement for marketing research and managerial decision-making – more than one would expect! The present course discusses (a) key concepts of statistics and statistical inference (e.g., NHST, Type I and II error, confidence intervals) and (b) different methods of data analysis (e.g., t-test, χ2 test, ANOVA, regression analysis) in a series of lectures that combine theory, illustrative examples, and hands-on exercises. Although IBM SPSS software is used in the context of Data Analysis for Markting Decisions (DAMD), the course is not a tutorial on the SPSS software package. Rather it focuses on the logic, the implementation, and the interpretation of statistical data analysis in general. Students who successfully complete DAMD will be equipped with the ability to effectively carry out data analysis projects in their later academic and professional career.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Students’ performance in the course is assessed as follows:
Midterm exam: 25%
Group project: 30%
Final exam: 45%No material other than a dictonary may be used in the final exam.
Midterm exam: 25%
Group project: 30%
Final exam: 45%No material other than a dictonary may be used in the final exam.
Mindestanforderungen und Beurteilungsmaßstab
The course has “prüfungsimmanenten Charakter”, therefore attendance is mandatory throughout the semester – more than three absences automatically results in a grade of 5 (“fail”).In total, a minimum of 50 percent is needed to pass the course. The grading system is the following: 0 to 49% - grade 5, 50 to 59% - grade 4, 60 to 69% - grade 3, 70 to 79% - grade 2, 80 to 100% - grade 1.
Students who fail must repeat the entire course (and must register in the usual way next time the course is offered). No opportunities for make-ups will be offered.
Students who fail must repeat the entire course (and must register in the usual way next time the course is offered). No opportunities for make-ups will be offered.
Prüfungsstoff
The midterm exam is based on the topics covered in sessions 1 to 5 and the corresponding book chapters. The exam typically (but not necessarily) involves a combination of single-choice/true-false questions.The group project is an assignment conducted by teams of 3 to 5 students and involves the analysis of a dataset as well as the interpretation and presentation of the relevant results. The grade of the group project takes into account both group and individual performance and is determined by the overall quality of the assignment weighted by the individual contribution of each member to the group project (as determined by peer-evaluation). Thus, a different grade might be awarded to students belonging to the same team. Detailed instructions will be provided in class.The final exam covers all topics discussed in the lectures and corresponding book chapters. The exam typically includes questions of different formats (e.g., multiple-choice questions and mini cases with open-ended questions).
Literatur
Required textbook: Field, A. (2013), Discovering Statistics Using SPSS (4th edition), Sage Publications: London [ISBN: 9781446249185] OR (new edition): Field, A. (2018), Discovering Statistics Using IBM SPSS Statistics (5th edition), Sage Publications: London [ISBN: 9781526445780].
Recommended additional textbook: Diamantopoulos, D. and Schlegelmilch, B. (2000), Taking the Fear out of Data Analysis (2nd edition), South-Western CENGAGE Learning: London [ISBN: 978-1-86152-430-0].
Complementary material: Marshall, E. (2016), The Statistics Tutor’s Quick Guide to Commonly Used Statistical Tests, University of Shefield - Statstutor Community Project, [Retrieved from www.statstutor.ac.uk]. → will be available on MoodleSystematically reviewing the course material (slides, book chapters, and exercises) is as essential as being (physically and mentally) present in the lectures!
Recommended additional textbook: Diamantopoulos, D. and Schlegelmilch, B. (2000), Taking the Fear out of Data Analysis (2nd edition), South-Western CENGAGE Learning: London [ISBN: 978-1-86152-430-0].
Complementary material: Marshall, E. (2016), The Statistics Tutor’s Quick Guide to Commonly Used Statistical Tests, University of Shefield - Statstutor Community Project, [Retrieved from www.statstutor.ac.uk]. → will be available on MoodleSystematically reviewing the course material (slides, book chapters, and exercises) is as essential as being (physically and mentally) present in the lectures!
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.09.2020 15:29