Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
040676 KU Metaheuristics (MA) (2017W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Fr 08.09.2017 09:00 bis Do 21.09.2017 12:00
- Abmeldung bis Sa 14.10.2017 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Lectur: Gast Prof. Celso Ribeiro
- Mittwoch 04.10. 15:00 - 16:30 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 11.10. 15:00 - 16:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 11.10. 16:50 - 18:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 18.10. 15:00 - 16:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 18.10. 16:50 - 18:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 08.11. 15:00 - 16:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 08.11. 16:50 - 18:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 15.11. 15:00 - 16:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 15.11. 16:50 - 18:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 22.11. 15:00 - 16:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 22.11. 16:50 - 18:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 29.11. 15:00 - 18:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 06.12. 15:00 - 18:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 13.12. 15:00 - 18:15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
1. Lectures (lecturer)
2. Application seminars (lecturer)
3. Paper presentations (students)
2. Application seminars (lecturer)
3. Paper presentations (students)
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
The evaluation methods and exact weights will be determined at the first course following a discussion with the students. They will depend on the background of the students and on the size of the group. They will involve the study of application papers, short oral
Celso C. Ribeiro Course description: Metaheuristics
2
presentations, and an application project. The active participation of the students in the discussions and in the application project will be encouraged. At the end of this course, students will know what metaheuristics are, why they are needed, how to design them, and how to evaluate their quality.
Celso C. Ribeiro Course description: Metaheuristics
2
presentations, and an application project. The active participation of the students in the discussions and in the application project will be encouraged. At the end of this course, students will know what metaheuristics are, why they are needed, how to design them, and how to evaluate their quality.
Literatur
1. M. G. C. Resende and Celso C. Ribeiro (2016), Optimization by GRASP: Greedy Randomized Adaptive Search Procedures, Springer, 312 pages.
2. M. Gendreau and J.-Y. Potvin (2010), editors, Handbook of Metaheuristics, 2nd edition, Springer, 648 pages.
3. E. K. Burke and G. Kendall (2014), editors, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, 2nd edition, Springer, 716 pages.
4. H. H. Hoos and T. Stützle (2005), Stochastic Local Search: Foundations and Applications, Elsevier, 658 pages.
2. M. Gendreau and J.-Y. Potvin (2010), editors, Handbook of Metaheuristics, 2nd edition, Springer, 648 pages.
3. E. K. Burke and G. Kendall (2014), editors, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, 2nd edition, Springer, 716 pages.
4. H. H. Hoos and T. Stützle (2005), Stochastic Local Search: Foundations and Applications, Elsevier, 658 pages.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.09.2020 15:29
Metaheuristics are particularly attractive in the efficient and effective solution of logistic decision problems in supply chains, transportation, telecommunications, vehicle routing and scheduling, manufacturing and machine scheduling, timetabling, sports scheduling, facility location and layout, and network design, among other areas.
The first goal of this course is to give the students a general idea of the class of problems that are amenable to be efficiently solvable by metaheuristics. With this goal in view, the course starts by a gentle and intuitive introduction to complexity theory. The second goal is to present the main metaheuristics and their building blocks, so as that the students could be able to propose or even develop simple solution strategies for practical problems. The students will learn the main concepts relevant for the design and application of metaheuristics. Finally, the third goal consists in showing some applications of metaheuristics.
1. A gentle introduction to the analysis of algorithms and complexity theory
2. Greedy algorithms
3. Local search
4. Building blocks: randomization, intensification, path-relinking, diversification, restarts
5. Greedy randomized adaptive search procedures (GRASP)
6. Simulated annealing
7. Tabu search
8. Genetic algorithms
9. Application seminars: scheduling sports competitions, routing in transportation networks, private virtual circuit routing in communication networks, data mining