040676 KU Metaheuristics (MA) (2020W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 14.09.2020 09:00 bis Mi 23.09.2020 12:00
- Anmeldung von Mo 28.09.2020 09:00 bis Mi 30.09.2020 12:00
- Abmeldung bis Sa 31.10.2020 12:00
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 07.10. 11:30 - 13:00 Digital
- Mittwoch 14.10. 11:30 - 13:00 Digital
- Mittwoch 21.10. 11:30 - 13:00 Digital
- Mittwoch 28.10. 11:30 - 13:00 Digital
- Mittwoch 04.11. 11:30 - 13:00 Digital
- Mittwoch 11.11. 11:30 - 13:00 Digital
- Mittwoch 18.11. 11:30 - 13:00 Digital
- Mittwoch 25.11. 11:30 - 13:00 Digital
- Mittwoch 02.12. 11:30 - 13:00 Digital
- Mittwoch 09.12. 11:30 - 13:00 Digital
- Mittwoch 16.12. 11:30 - 13:00 Digital
- Mittwoch 13.01. 11:30 - 13:00 Digital
- Mittwoch 20.01. 11:30 - 13:00 Digital
- Mittwoch 27.01. 11:30 - 13:00 Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
* [40%] Four short exams á ca. 15 minutes (written, 10% each)
* [45%] Project work (choose one):
- Programming a metaheuristic for an optimisation problem
- Read and study (i.e., summarise, analyse and criticise) a scientific paper
* [15%] Oral presentation of project
* [45%] Project work (choose one):
- Programming a metaheuristic for an optimisation problem
- Read and study (i.e., summarise, analyse and criticise) a scientific paper
* [15%] Oral presentation of project
Mindestanforderungen und Beurteilungsmaßstab
In order to obtain a positive grade on the course, at least 50% of the overall points have to be achieved. The grades are distributed as follows:
1: 87% to 100%
2: 75% to <87%
3: 63% to <75%
4: 50% to <63%
5: <50%
1: 87% to 100%
2: 75% to <87%
3: 63% to <75%
4: 50% to <63%
5: <50%
Prüfungsstoff
* Analysis of algorithms and complexity theory (basics)
* Local search methods
* Nature-inspired metaheuristics
* Construction-based metaheuristics
* Local search methods
* Nature-inspired metaheuristics
* Construction-based metaheuristics
Literatur
The teaching material (slides, sample code, further reading, etc.) is available on the e-learning platform Moodle.Useful literature:
1. M. Gendreau and J.-Y. Potvin (2010), editors, Handbook of Metaheuristics, 2nd edition, Springer, 648 pages.
2. E. K. Burke and G. Kendall (2014), editors, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, 2nd edition, Springer, 716 pages.
3. H. H. Hoos and T. Stützle (2005), Stochastic Local Search: Foundations and Applications, Elsevier, 658 pages.
1. M. Gendreau and J.-Y. Potvin (2010), editors, Handbook of Metaheuristics, 2nd edition, Springer, 648 pages.
2. E. K. Burke and G. Kendall (2014), editors, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, 2nd edition, Springer, 716 pages.
3. H. H. Hoos and T. Stützle (2005), Stochastic Local Search: Foundations and Applications, Elsevier, 658 pages.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Fr 12.05.2023 00:13
Metaheuristics are particularly attractive in the efficient and effective solution of logistic decision problems in supply chains, transportation, telecommunications, vehicle routing and scheduling, manufacturing and machine scheduling, timetabling, sports scheduling, facility location and layout, and network design, among other areas.The objective of this course is to provide students with the fundamental tools for designing, tuning, and testing heuristics and metaheuristics for hard combinatorial optimization problems. Besides that, we will also cover the fundamental concepts of complexity theory that are the key to understanding the need for approximate approaches and to design efficient heuristics and metaheuristics.
1. A gentle introduction to the analysis of algorithms and complexity theory
2. Historical and modern local search methods
3. Nature-inspired metaheuristics
4. Construction-based metaheuristics