040772 UK Komplexe statistische Methoden (MA) (2024W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 09.09.2024 09:00 bis Do 19.09.2024 12:00
- Abmeldung bis Mo 14.10.2024 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 10.10. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 17.10. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 24.10. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 31.10. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 07.11. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 14.11. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 21.11. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 28.11. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 05.12. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 12.12. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 16.01. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 23.01. 16:45 - 18:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
There is a written exam for the theoretical part on 23.01.2025 and three exercise sheets for each topic.
Exercise sheets with both theoretical and programming exercises will be provided on 31.10.2024, 21.11.2024, and 09.01.2025. A week later the exercise sheets will be discussed in the exercise session.The use of AI tools (e.g. ChatGPT) for the production of texts is only permitted if they are expressly requested by the course leader (e.g. for individual work tasks).
Exercise sheets with both theoretical and programming exercises will be provided on 31.10.2024, 21.11.2024, and 09.01.2025. A week later the exercise sheets will be discussed in the exercise session.The use of AI tools (e.g. ChatGPT) for the production of texts is only permitted if they are expressly requested by the course leader (e.g. for individual work tasks).
Mindestanforderungen und Beurteilungsmaßstab
40 points written exam
20 each exercise sheet
The grade results according to the scheme: 4 from 50 points, 3 from 63 points, 2 from 75 points, and 1 from 87 points.
20 each exercise sheet
The grade results according to the scheme: 4 from 50 points, 3 from 63 points, 2 from 75 points, and 1 from 87 points.
Prüfungsstoff
All topics covered in the lecture.
Literatur
Tsybakov. A. (2009) Introduction to nonparametric estimation.
Fan, J. and Gijbels, I. (1996) Local polynomial modeling and its applications.
Randall L. Eubank. (1999) Nonparametric regression and spline smoothing.
Fan, J. and Gijbels, I. (1996) Local polynomial modeling and its applications.
Randall L. Eubank. (1999) Nonparametric regression and spline smoothing.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 03.10.2024 16:45
Get acquainted with concepts of nonparametric density estimation and regression: methodology, theory, and applications.
Implementation of methods in statistical software is part of the lecture.Contents:
1. Histograms and kernel density estimators
2. Local polynomial estimators
3. Spline estimatorsMethods:
Lectures with exercise sessions.
Lecture notes, exercise sheets, and data will be available online.
Students are supposed to code in statistical software.