040894 KU LP Modeling I (MA) (2021W)
Prüfungsimmanente Lehrveranstaltung
Labels
GEMISCHT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 13.09.2021 09:00 bis Do 23.09.2021 12:00
- Anmeldung von Mo 27.09.2021 09:00 bis Mi 29.09.2021 12:00
- Abmeldung bis Fr 15.10.2021 23:59
Details
max. 35 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
The course format this semester will be hybrid. New content will be mostly discussed in live online classes. On Nov. 26th, there will be a the possibility to practice programming on-site at OMP.
Exams will take place on-site at OMP on Nov. 18th, and Dec. 16th, closed book.
The mode might be adaped if Corona rules change.
- Donnerstag 07.10. 09:45 - 13:00 Digital
- Donnerstag 14.10. 09:45 - 13:00 Digital
- Donnerstag 21.10. 09:45 - 13:00 Digital
- Donnerstag 28.10. 09:45 - 13:00 Digital
- Donnerstag 04.11. 09:45 - 13:00 Digital
- Donnerstag 11.11. 09:45 - 13:00 Digital
-
Donnerstag
18.11.
09:45 - 13:00
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß - Freitag 19.11. 09:45 - 13:00 Digital
- Donnerstag 25.11. 09:45 - 13:00 Digital
-
Freitag
26.11.
09:45 - 13:00
PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß - Donnerstag 02.12. 09:45 - 11:10 Digital
-
Donnerstag
16.12.
09:45 - 13:00
Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock - Donnerstag 13.01. 09:45 - 11:15 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
20 % homework
40 % midterm exam (on-site) (Nov, 18th, 2021)
40 % final exam (onsite) (Dec, 16th, 2021)
40 % midterm exam (on-site) (Nov, 18th, 2021)
40 % final exam (onsite) (Dec, 16th, 2021)
Mindestanforderungen und Beurteilungsmaßstab
In order to pass the course (minimum requirement) students have to achieve at least 50% in total.The other grades are distributed as follows:
4: 50% to <63%
3: 63% to <75%
2: 75% to <87%
1: 87% to 100%
4: 50% to <63%
3: 63% to <75%
2: 75% to <87%
1: 87% to 100%
Prüfungsstoff
Students are expected to be able to understand, formulate and solve a variety of LP models in the exam and implement them using Mosel / XpressMP. Slides will be available in Moodle.Content of the exams:
- Formulation of LP models
- Graphical solution method
- The Simplex algorithm
- Duality
- Sensitivity analysis
- Mosel / XPress
- Branch-and-bound
- Modeling with binary variables
- Formulation of specific objectivesThe final exam will additionally include parts where students need to show the implementation skills acquired during lessons and homework (e.g. how the implementation of a certain constraint would look like, how one has to declare variables, etc.) and by explaining a given Mosel code and/or finding errors in it.
- Formulation of LP models
- Graphical solution method
- The Simplex algorithm
- Duality
- Sensitivity analysis
- Mosel / XPress
- Branch-and-bound
- Modeling with binary variables
- Formulation of specific objectivesThe final exam will additionally include parts where students need to show the implementation skills acquired during lessons and homework (e.g. how the implementation of a certain constraint would look like, how one has to declare variables, etc.) and by explaining a given Mosel code and/or finding errors in it.
Literatur
* Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Athena Scientific.
* Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity. Dover Publications.
* Guéret, C., Prins, C., & Sevaux, M. (2002). Applications of optimisation with Xpress-MP. Dash optimization.
* Hillier, F. S., & Lieberman, G. J. Introduction to Operations Research. McGraw-Hill.
* Anderson, D. R., Sweeney, D. J. An introduction to management science: quantitative approaches to decision making. South-Western.
* Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity. Dover Publications.
* Guéret, C., Prins, C., & Sevaux, M. (2002). Applications of optimisation with Xpress-MP. Dash optimization.
* Hillier, F. S., & Lieberman, G. J. Introduction to Operations Research. McGraw-Hill.
* Anderson, D. R., Sweeney, D. J. An introduction to management science: quantitative approaches to decision making. South-Western.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Fr 12.05.2023 00:13
Introduction to Mosel / XPress-MP
Simplex Method (brief repetition)
Sensitivity Analysis & its economic interpretation
Introduction to (mixed) integer programming
Modeling with binary variablesNew content will be provided as slides with audio comments. Homework examples have to be solved individually and have to be uploaded in Moodle. There will be an online tutorial (Nov. 19th) for implementing simple LP models in Mosel. On Nov 26th students can practice their implementation skills under supervision in the PC lab (attendance not mandatory).